
KeyForge: Non-Attributable Email from Forward-Forgeable Signatures

Michael A. Specter
MIT

Sunoo Park
MIT & Harvard

Matthew Green
Johns Hopkins University

Abstract
Email breaches are commonplace, and they expose a wealth
of personal, business, and political data whose release may
have devastating consequences. Such damage is compounded
by email’s strong attributability: today, any attacker who gains
access to your email can easily prove to others that the stolen
messages are authentic, a property arising from a necessary
anti-spam/anti-spoofing protocol called DKIM. This greatly
increases attackers’ capacity to do harm by selling the stolen
information to third parties, blackmail, or publicly releasing
intimate or sensitive messages — all with built-in crypto-
graphic proof of authenticity.

This paper introduces non-attributable email, which guar-
antees that a wide class of adversaries are unable to convince
discerning third parties of the authenticity of stolen emails.
We formally define non-attributability, and present two sys-
tem proposals — KeyForge and TimeForge — that provably
achieve non-attributability while maintaining the important
spam/spoofing protections currently provided by DKIM. Fi-
nally, we implement both and evaluate their speed and band-
width performance overhead. We demonstrate the practicality
of KeyForge, which achieves reasonable verification overhead
while signing faster and requiring 42% less bandwidth per
message than DKIM’s RSA-2048.

1 Introduction

Email has long been the world’s largest messaging scheme,
used ubiquitously for personal, industry, and government com-
munication. As such, it is a valuable target for attack: a user’s
account is a trove of sensitive information, unauthorized ac-
cess to which enables spam, fraud, blackmail, and other abuse.

To help protect users from spam and fraud, the IETF de-
veloped a widely-adopted standard called DomainKeys Iden-
tified Mail (DKIM) [16]. DKIM’s goal is to assure the re-
ceiving server that each incoming message was really sent
from the domain it appears to be from, enabling inter-domain
accountability in case of spam and easy detection of spoofed
messages. DKIM’s protocol is simple: the originating server

cryptographically signs each outgoing email’s contents and
metadata, allowing the receiving server to verify the message
after looking up the sending server’s public key via DNS.

While DKIM was an important innovation that continues
to be critical to the email ecosystem, its design came with
an unintended side-effect: namely, email thieves can credibly
convince any third party that stolen messages are authentic
and unmodified via DKIM signatures from a reputable ser-
vice provider. This increases incentives to break into email
accounts, as a successful attacker can credibly (and anony-
mously) sell, publish, or use the stolen data for blackmail.

Email attributability has had real-world impact. For exam-
ple, Wikileaks publicly asserts [56] that it relies on DKIM
signatures to confirm the veracity of their publications: Wik-
ileaks leveraged DKIM to authenticate messages stolen from
the Democratic National Committee (DNC) and Hillary Clin-
ton’s campaign chairman during the 2016 U.S. presidential
election season [55]. Because of DKIM, any third party could
easily confirm the legitimacy of these stolen messages using
public keys tied to Google and Microsoft’s email services,
despite the information’s questionable origin. Indeed, the prac-
tice of using DKIM to verify unauthorized email leaks has
now become a standard journalistic practice [40,46], with the
Associated Press releasing a software tool for this purpose [6].

DKIM’s attributability problem has been recognized but
unsolved for some time. Jon Callas, one of the original authors
of the DKIM RFC, has publicly stated that attributability is an
unintended design flaw of the protocol [17, 18], and has since
suggested a number of ways to mitigate its impact, but notes
that proposals at the time of his writing were insufficient or
impractical [19]. Other researchers also flagged the issue as
early as 2004, e.g., Adida et al. [2], Unger et al. [52], and
Bellovin [9]; however, designing a practical, non-attributable
DKIM replacement has remained an open question.

It is alarming that an unintended result of an ubiquitous
messaging protocol has produced a scalable, by-default sys-
tem for credible propagation of illicitly obtained private mes-
sages. The specific DNC incident might well have happened
with or without DKIM: for a high-value target, interested par-

ties would likely seek to verify the stolen emails in various
ways, including non-technical methods (e.g., journalistic cor-
roboration, cross-checking timestamps, geolocation, etc). But
just the possibility of manual verification — a possibility that
has existed since handwritten letters — is a stark contrast from
the easy, inbuilt attribution that has unintentionally become
ingrained in today’s email ecosystem.

Public figures are not the only victims of email breaches;
new reports of email theft seem to surface every few weeks.
Astoundingly, all of Yahoo!’s 3 billion email accounts were
compromised in a 2013 breach [49]. Although Yahoo!’s users
have been spared public dissemination of their messages, oth-
ers (e.g., Sony and Stratfor), have been less fortunate [53, 54].
Attackers appear to have diverse motives, ranging from fi-
nancial gain — e.g., selling patient healthcare data gleaned
from emails [33] — to industrial espionage and monitoring
political dissidents and foreign officials [28].

In light of the potential harm to users, it would be irrespon-
sible to let DKIM’s unintended side-effect of attributability
remain unscrutinized: if attributability is to remain a feature
of DKIM, it should be as a result of a deliberate decision that
takes into account the range of technically feasible alterna-
tives. With the above as motivation, we ask:

Is it possible to mitigate the potential harms of
attributability in DKIM while maintaining the sys-
tem’s efficient spam and spoofing resistance?

An initial intuition may be that attributability of stolen
email is an unavoidable side effect of spam and spoofing re-
sistance, given the indirect and decentralized nature of email:
it is intuitively unclear how a recipient with no communica-
tion to the sending server can be certain of a message’s origin
without also gaining the ability to convince a third party of the
same. Under certain conditions, this intuition amounts to an
impossibility. Yet, perhaps surprisingly, our work shows that
modern cryptography can reconcile the apparently conflicting
goals of spam protection and non-attributability. We construct
efficient protocols that achieve the important security guaran-
tees that DKIM provides, while simultaneously guaranteeing
non-attributability of stolen email. Further, we show that con-
figurations of our protocols are practical for deployment on
the Internet today, achieving reasonable efficiency and band-
width overhead.

1.1 Key Ideas
There are two main ideas underlying our proposals: delayed
universal forgeability and immediate recipient forgeability.
Delayed universal forgeability. This approach ensures that
signatures with respect to past emails “expire” after a time
delay ∆ and thereafter become forgeable by the general public
(i.e., arbitrary outsiders or non-parties). This property ensures
that no attribution will be credible after the time delay has
elapsed. We call this property delayed universal forgeability.

As long as ∆ is set larger than the maximum viable time for
email latency, the signature will still be convincing to the
recipient at the time of receipt, thus maintaining the spam and
spoofing-resistance of DKIM.

Signatures that possess delayed universal forgeability re-
tain all the unforgeability properties of a standard signature
scheme, until the set time ∆ has passed. Thus in cases where
an attacker gains access to email and shows it to a third party
within ∆ time after the email was sent, a third party will be
convinced of the email’s authenticity. Effectively, delayed
universal forgeability protects against adversaries that com-
promise an email account by breaking in and taking a snapshot
(“after-the-fact attacks”), but not adversaries that fully control
an email account and monitor its email in real time (“real-
time attacks”). After-the-fact attacks cover a broad range of
realistic attacks, for example, including many data breaches.
Next, we discuss how we address real-time attacks.
Immediate recipient forgeability. Suppose that the fact of
access to a particular client account implies the ability to forge
messages from arbitrary other servers to that recipient only:
that is, the ability to obtain valid DKIM signatures on email
content and metadata of one’s choice. We call this immediate
recipient forgeability. Importantly, the recipient constraint
ensures the inability to impersonate any other server for the
purposes of email addressed to other recipients, thus maintain-
ing DKIM’s spam and spoofing-resistance. This undermines
the credibility of attackers claiming ongoing access to a par-
ticular email account and attempting to convince third parties
of the authenticity of emails supposedly sent to (and from)
that account — even for real-time attacks, which may publish
allegedly-incoming emails immediately as they are received.

Recipient forgeability is weaker than universal forgeability
in the following sense: published emails credibly reveal that
the attacker has gained access to some users’ key material,
although not that the email content is authentic. Thus, recip-
ient forgeability is not enough by itself; the two definitions
are complementary and incomparable.
Combining both ideas. Our protocols attempt to achieve the
“best of both worlds,” by providing universal forgeability when
possible, and falling back on immediate recipient forgeability
when necessary. Section 3 defines our threat model, discusses
its limitations, and formalizes immediate recipient forgeability
and delayed universal forgeability.

1.2 Overview of Solutions
This paper constructs and evaluates two base protocols Key-
Forge and TimeForge, and two enhanced variants KeyForge+

and TimeForge+ (which consist of the respective base pro-
tocol with a modified signing algorithm and one additional
sub-protocol). The two base schemes can be seen as two dif-
ferent approaches to building a new type of signature scheme
that we introduce: forward-forgeable signatures (FFS).
Forward-forgeable signatures. An FFS is a digital signa-
ture scheme equipped with a method to selectively disclose

signature-invalidating “expiry information” for past signa-
tures without similarly damaging the public key for future
signatures. Succinctness of FFS is a measure of efficiency
of disclosure. We present two constructions of FFS, which
are the key building blocks of KeyForge and TimeForge re-
spectively. FFS may be of independent interest as a signature
primitive for other applications.
KeyForge. Our first proposal, KeyForge (§5.1), achieves de-
layed universal forgeability by publishing signing keys after
a delay ∆. KeyForge relies on an FFS based on hierarchical
identity-based signatures (HIBS), which achieves logarithmic
succinctness. As a result, KeyForge can efficiently distribute
forging keys with minimal bandwidth.
TimeForge. Our second protocol, TimeForge (§5.2), assumes
a publicly verifiable timekeeper (PVTK) model in which
a trusted timekeeper periodically issues publicly verifiable
timestamps. In a nutshell, the idea of TimeForge is to sub-
stitute each signature on a message m at time t with a suc-
cinct zero-knowledge proof of the statement S(m)∨T (t +∆),
where: S(m) denotes knowledge of a valid signature by the
sender on m and T (t +∆) denotes knowledge of a valid times-
tamp for a time later than t +∆. Including T (t +∆) ensures
delayed universal forgeability. TimeForge can be described
as a forward-forgeable signature scheme in the PVTK model.
KeyForge+/TimeForge+. The enhanced protocols (§5.3)
consist of the respective base protocols with the following
modifications: (1) an additional protocol, called forge-on-
request, that allows parties to request forged emails addressed
only to the requester herself under limited circumstances;
and (2) for multiple-recipient emails, a new signature is pro-
duced for each recipient domain (unlike the base protocols
and DKIM, which produce one signature per outgoing email).

Among our protocols, KeyForge is the most efficient and
would necessitate the least change to existing infrastructure.
KeyForge+ and TimeForge+ are alternative approaches show-
ing the feasibility of addressing stronger threat models though
at significant overhead (in fact, certain overhead is unavoid-
able in the stronger threat model; see §3). TimeForge could
become more practical with advances in the fast-moving area
of non-interactive proofs.

Summary of our Contributions.
1. We define non-attributability in store-and-forward email

systems, and propose two system designs — KeyForge
(§5.1), and TimeForge (§5.2) — that achieve this goal.

2. We implement KeyForge and TimeForge and evaluate
their signing, verification, and bandwidth costs, and show
that KeyForge has acceptable bandwidth and processing
overhead for practical deployment (§6).

3. We provide formal definitions for email non-attributability
and prove that our constructions realize them.

4. Of independent interest, we give provably secure construc-
tions of a new cryptographic primitive, succinct forward-
forgeable signatures (FFS).

MTA

MTA

MTA

MTA

MTA

MTA

Sender’s Server
(MSA)

Sender’s Client
(MUA)

Receiver’s Server
(MDA)

Receiver’s Client
(MUA)

Sender’s Domain Receiver’s Domain

Figure 1: Simplified email routing infrastructure

2 Background on Email

This section introduces basic terminology of mail routing (as
defined in RFC 5598 [24]) and describes how email infras-
tructure necessitates certain system requirements.

As described in Figure 1, email uses an asynchronous
“store and forward” routing protocol built on top of TCP/IP.
Users first establish a relationship with a trusted email ser-
vice provider, called a Mail Submission Agent (MSA) on
the sender side and a Mail Delivery Agent (MDA) on the
receiver side. The user’s email client is called a Mail User
Agent (MUA). Email originates from an MUA, and arrives at
the user’s trusted MSA. Depending on the system’s configu-
ration, the MSA may send the message to intermediary Mail
Transfer Agents (MTAs) it trusts. Eventually, as the message
leaves the sending server’s domain, an MTA will perform
a DNS lookup to discover which MTAs are authorized to
process messages for the receiving domain, and the email is
then sent via SMTP to one of these destination MTAs. After
a number of hops depending on the sending and receiving
organizations’ infrastructure, the email reaches the receiver’s
MDA, which is responsible for verifying the message for the
receiver’s MUA.

2.1 Email Authentication
The IETF has developed a number of standards that allow
domains to sign and verify incoming and outgoing messages.
Next, we overview the three that have seen appreciable adop-
tion: DKIM, SPF, and DMARC. The IETF has also proposed
an experimental protocol called ARC, which allows interme-
diaries to modify email messages in an authenticated way. We
discuss the implications of ARC in the full version [48].
DKIM. DomainKeys Identified Mail (DKIM) is an IETF
standard that requires an MSA to sign outgoing email, and an
MDA to verify that email by looking up the MSA’s public key
in the DNS. This procedure is described informally below:
1. Setup: The MSA generates a key pair and uploads the

public key to the DNS in a TXT record.
2. Sign: The MSA adds the location of its public key to

the email’s metadata (or header), as well as additional
metadata needed for signature verification, then signs the
email and headers with its private key.1

1This usually includes a hash of the whole message, but the specification
does allow for portions of the message to go unsigned. This is not default

3. Verify: On receipt, the MDA does a DNS lookup for the
MSA’s public key, and uses it to verify the signature.

SPF. The Sender Policy Framework (SPF) ensures that inter-
mediary MTAs are permitted to send and receive messages as
a part of the domain. This solves a somewhat orthogonal prob-
lem to DKIM: SPF provides spoofing protection by limiting
what IP addresses are valid accepting MTAs.
DMARC. An SPF or DKIM failure as a result of a misconfig-
uration is indistinguishable from a failure due to an attempted
message spoofing, and neither DKIM nor SPF provide mech-
anisms for alerting the sending domain that there has been a
problem. DMARC solves this by adding a DNS TXT record
specifying to the receiver what it should do in the case of such
failures (such as quarantine, reject, or accept the message de-
spite the failure), as well as providing an email address to
send aggregated statistics on such failures.

2.2 DKIM Replacement Constraints
This section overviews a number of demands on email that
are not common to many other messaging systems. We find
that these requirements make achieving email deniability and
security uniquely difficult, and necessitate the new approach
we describe in this paper.
Indirectness by store and forward. Email routing is a store
and forward protocol in which messages are delivered in-
directly via multiple hops, and routes, as well as the actual
destination addresses, are often not known in advance. To
quote the SMTP RFC [37], “[i]t is sometimes difficult for an
SMTP server to determine whether or not it is making final
delivery since forwarding or other operations may occur after
the message is accepted for delivery.” Obvious examples of
indirectness include mail forwarding (in which users config-
ure their MDA to forward email received from an account
on one domain to another), and remailers (such as mailing
lists, that act as MUAs initially); however, there are other, less
obvious, places in the ecosystem where this occurs.2

For example, many organizations leverage third-party
MTAs that they do not own as an initial hop between the In-
ternet and the organization’s self-hosted MDA/MSA.3 These
MTAs often provide security benefits to the MDA, such as
protection from spam, malicious attachments, or DDoS at-
tacks. While these intermediaries are allowed to quarantine
messages or provide flow control to the MDA, under DKIM,
they cannot undetectably modify or spoof emails.

behavior for most DKIM applications, and has seen limited use in practice.
2Similarly, Mail Retrieval Agents (MRAs) like Getmail [22] behave like

MUAs to an MDA, but may forward emails on to an alternate, final MDA.
Popular email services like Gmail provide services that download messages
from other domains via IMAP.

3Third-party MTAs are commonplace. We did an informal survey by
scraping DNS MX records for the Alexa top 150k. Surprisingly few, 31,615,
have an MX record, and 10,260 use an obvious third-party hosting service
(e.g., Google’s MTAs), leaving 21,615 that potentially self-host. Of the last
category, 31.4% (6,793) are using a confirmed multi-hop third-party MTA.
Raw results are in our repo in results.csv [1]. This is likely a conservative
estimate, as few servers appear to have matching domain names.

In summary, email’s indirect, store-and-forward system
results in the following constraints: (1) final-destination infor-
mation (e.g., addresses, keys) may be unknown to the sender,
and (2) an MDA may not be certain whether it is the final
destination of a message.
Throughput and scalability. Email is an any-mesh ecosys-
tem in which any domain owner must be able to set up the
appropriate DNS records and interoperate with any other do-
main’s servers. Further, larger domains may sign and verify
hundreds to millions of emails per day, and throughput re-
quirements often increase over time. Therefore, beyond good
constants on signing and verification time, the service must
scale: adding more resources should provide linear or better
performance, and scalability in interconnection with other
servers is crucial as well.4

Such scalability requirements indicate that certain types
of overhead that would be trivial in other messaging con-
texts, (e.g., communication prior to sending a message or
per-message round trips between servers), are unlikely to be
viable for email. For example, it would be difficult to require
the MDA to connect back to the original MSA for every email.
Long-lived public keys. One natural approach to short-lived
signatures is to leverage correspondingly short-lived keys and
publish each secret key at the end of its lifetime, or use short
key sizes designed to be able to be brute-forced within the
same period (see [19]). This approach has been mentioned in
passing outside of the context of email [12]. Unfortunately,
too-frequent key rotation entails practical problems that ren-
der this tactic unworkable for DKIM. Rotating keys stored
in DNS is an often manual process that introduces risk of
misconfiguration that can cause stability issues, and storing
large amounts of key material that must be published, main-
tained, and shared among several servers is organizationally
difficult and increases risk of key theft. DNS results are also
often cached, so replacing an individual record is slow and
can yield inconsistent results. Finally, it is hard to bound the
time for short keys to be broken by all threat actors.
Incremental deployment. Given the myriad existing email
servers and the need for interoperability, we consider the ma-
jority of the email ecosystem to be entrenched. It would be
difficult to require substantial changes to mail routing, and it
is unrealistic that every actor would promptly switch to a new
scheme. Instead, it is far more realistic that DKIM could be
replaced by incrementally updating the signing algorithms.

2.2.1 Resulting System Requirements

The particular constraints of email, described earlier in §2.2,
rule out many natural approaches to non-attributability, in-
cluding solutions that might be more feasible in other messag-
ing environments. Since we treat email’s indirect, store-and-
forward nature as an entrenched property of the infrastructure,
realistic proposals for email protocol modifications must not

4The IETF standard for DMARC [38] states that pre-sending agreements
is a poor scalability choice for this reason. See also [50].

rely on sender use of final-destination information, such as ad-
dresses or keys (“Requirement 1” or “R1”). Moreover, due to
the store-and-forward and scalability requirements, email pro-
tocols should avoid interactive sender-receiver (MDA–MSA)
communication whenever possible; in particular, we consider
roundtrip sender-receiver communication per email to be in-
viable (“R2”). Additionally, email protocols must have long-
lived public keys (“R3”).

Notably, none of the following approaches adhere to
both the above requirements: interactive zero-knowledge
proofs (violate R2); ring signatures (proposed for email non-
attributability in [3, 12]) (violate R1); designated-verifier sig-
natures (violate R1); short-lived keys with publication of
secret keys after use (violate R3); and — importantly — sys-
tems based on deniable authenticated key exchange (DAKE)
(which violates R2), such as OTR or Signal [12, 51, 52]. In-
deed, both the OTR paper [12, §6] and a recent DAKE pa-
per [51, §6.6] dedicate a full subsection to discussing the
heightened challenges of non-attributability for email as com-
pared to other messaging environments, and note that their
proposals are not adequate for email due to its asynchronous,
non-interactive, store-and-forward nature.

Finally, we note that the simple approach of relying on
MDAs to delete DKIM header information after receipt is
flawed not only because it fails to address our threat models
(§3), which require security against malicious or compromised
recipients, but also because it violates Requirement 1: relying
on MDAs for deletion is untenable given that MDAs may not
know if they are the final endpoint (and if not, the signatures
must be kept for later verification).
Summary. A viable non-attributable replacement for DKIM
must have: (1) compatibility with indirect, store-and-forward
communication (in particular, no reliance on sender knowl-
edge of final destination addresses or keys); (2) no require-
ment of sender-receiver interaction per email; (3) long-lived
public keys; (4) no required behavior for MDAs that depends
on whether they are the final destination; (5) little impact
on other parts of the email ecosystem; and (6) good systems
properties allowing for incremental, scalable deployment.

3 Model and Security Definitions

Notation. “PPT” means “probabilistic polynomial time.” |S|
denotes the size of a set S. [n] denotes the set {1, . . . ,n} of pos-
itive integers up to n, and P(·) denotes powerset. ≈c denotes
computational indistinguishability. τ||e denotes the result of
appending an additional element e to a tuple τ.

• Time We model time in discrete time-steps and assume
fairly consistent (say, within 3 mins) local clocks. This is
realistic given NTP [15].

• Synchrony ∆̂ is an upper bound on the time required for
email delivery. Our parameter settings depend on ∆̂, and
our evaluation sets ∆̂ at 15 minutes (see § 5.1).

• DNS Our model assumes all parties and algorithms have
access to DNS and can update their own DNS records.

• Bulletin board We assume each party has a way to pub-
lish persistent, updatable information retrievable by all
other parties and algorithms. This could be via DNS or
another medium, such as posting on a website. (Formally,
this can be modeled as a global service BB that: (1) is
initialized with an empty table of key-value pairs; (2)
upon receiving a message in {write,append}× {0,1}∗
authenticated with respect to a public key pk, respectively
(over)writes or appends x to the value (if any) associated
with key pk; and (3) upon receiving a message of the form
(lookup, pk), responds with the value x associated with
pk in the table, if any.)

• Publicly verifiable timekeeping service (PVTK) A
PVTK is a global service, initialized with respect to public
parameters pp, which maintains a monotonically increas-
ing clock. At any time t, any party can query the PVTK
to obtain a publicly verifiable (w.r.t. pp) proof πt that the
current PVTK clock time is at least t, but such proofs are
computationally hard to forge for future times t ′ > t.

In the context of the KeyForge family of protocols, all
algorithms are assumed capable of interacting with BB. In the
context of the TimeForge protocols, all algorithms are instead
assumed to be able to query a global PVTK. (To simplify
notation, we do not write ABB or APVTK explicitly; but these
assumptions will be recalled in the respective sections.)
Threat models. We are concerned with attacks that disclose
private communications obtained at the MDA (whether be-
cause the MDA is compromised or because it is malicious).

We consider two threat models, defined below. KeyForge
and TimeForge achieve security against Threat Model 1,
which targets scenarios where attackers may gain access to an
email server but are unlikely to maintain access for extended
periods. The enhanced protocols KeyForge+ and TimeForge+

achieve security against Threat Model 2, the stronger of the
two threat models, which is necessary in settings where at-
tackers’ access may likely remain undetected for extended
periods (e.g., advanced persistent threats).

Threat Model 1. (After-the-fact attacks) Recipient honest
at the time of email receipt, but is later compromised by an
attacker that takes a snapshot of all stored email content.

Threat Model 2. (Real-time attacks) Recipient may be mali-
cious at the time of email receipt, with ongoing and immediate
intent to disclose received email content to third parties.

Ruling out trivial solutions. A trivial and uninteresting way
to achieve non-attributability, in either threat model, is not
to sign emails at all. Of course, this is undesirable as it
would undermine the spam- and spoofing-resistance for which
DKIM was designed. Providing these guarantees is an im-
plicit requirement throughout this paper. Moreover, since our
threat models consider malicious receiving servers, any non-
attributability that relies on receiving-server behavior — such
as DKIM header deletion upon receipt — is unsatisfactory.

Preventing real-time attacks requires interaction. Any
store-and-forward email protocol that both (1) allows recipi-
ents to verify the sending domain’s identity and (2) is secure
against real-time attacks (Threat Model 2) must be interactive,
as more formally detailed in the full version [48]. Informally,
in the store-and-forward model, a non-interactive protocol
transcript (consisting of a single message from the sender),
cannot depend on final-destination recipient information, so
any operations (such as verification or forgery) that the verifier
can run must also be executable by others. This also relates to
the intuitive idea that someone who receives a single message
m convincing them of the message’s origin must also be able
to use m to convince others of the same.

In contrast, security against after-the-fact attacks (Threat
Model 1) is possible non-interactively, as KeyForge and Time-
Forge exemplify. KeyForge+ and TimeForge+ augment Key-
Forge and TimeForge with an interactive (two-message) pro-
tocol, which adds significant overhead and complexity to the
non-interactive base protocols. The overhead of our construc-
tions is furthermore minimal in certain respects: just two
rounds of interaction, and the protocols do not require inter-
action on email receipt, but rather, introduce the possibility of
interaction by an additional protocol (details in §5.3).
What’s outside our threat models? While Threat Model 2
considers powerful real-time adversaries, it too has limits.
Definitionally, and unsurprisingly, no deniability is possible
against a global passive adversary that can be sure of ob-
serving all traffic as it flows over the network. As already
mentioned, our threat models are not designed to provide non-
attributability against adversaries directly observing email
traffic, but rather against those to whom the adversaries might
try to pass the stolen emails on.

Our threat models focus on attacks at the receiving server
(MDA), because we believe this covers a wide, though not
exhaustive, range of attack scenarios of interest. This no-
tably excludes malicious intermediaries (MTAs). Even though
our threat models do not focus on MTA-based attacks, our
protocols KeyForge+ and TimeForge+ do provide a par-
tial non-attributability guarantee against malicious interme-
diaries (as discussed in §3.1). Nonetheless, malicious inter-
mediaries pose a legitimate concern not fully addressed by
this work; achieving stronger non-attributability guarantees
against MTAs could be interesting future research.5

Finally, we note that our definitions do not necessarily pro-
vide non-attributability against adversaries that can precon-
figure the receiving server with custom secure hardware (see
also §3.1). We consider such attacks outside our threat model:

5It is also unclear how effective local MTA-based attacks would be to
compromise entire email accounts; such attacks’ effectiveness would likely
depend on email routing configurations at the servers involved. By entire-
account compromise we mean learning all stored emails and/or all real-time
emails for a single account over an extended period, as opposed to learning
only occasional emails from scattered accounts. Entire-account compromise
would be useful to target particular accounts, or to obtain a relatively complete
picture of compromised accounts (e.g., for identity theft). In contrast, MDA-
based attacks provide a direct way to compromise entire accounts.

i.e., we assume servers are compromised after physical setup.
We conclude this section with additional context and expla-

nation for our modeling choices.
Client-server trust. Email clients rely heavily on their email
servers. A malicious email server could easily and unde-
tectably misbehave in many essential functions: e.g., drop
incoming emails, modify outgoing emails (since typically,
emails are not signed client-side), or falsify content and meta-
data of incoming emails (since typically, clients do not per-
form DKIM verification themselves). Since client-server trust
is very high in practice, this paper treats the client and server
as a single entity, and relatedly, our threat models do not con-
sider malicious behavior by MSAs that aims to undermine
non-attributability of their own clients’ emails. (One might
also argue such malicious behavior would quickly lose an
MSA its clients.)
Evidence-based credibility. In a system where credibility is
based on reputation rather than evidence — that is, where cer-
tain parties’ statements are taken on faith, or believed simply
because of who they are even without supporting evidence
— a “reputable” party with the ability to eavesdrop on the
communication channel would be able to undermine non-
attributability by keeping traffic logs. Our model assumes
mutually distrustful parties: i.e., that no party is taken simply
on its word as just described. In other words, credibility in
our model is evidence-based and not reputation-based.
Systemic attributability vs. attributability by choice. The
goal of non-attributability is to empower users to choose
whether or not their messages are attributable, to disincen-
tivize email theft and misuse in contrast to attributability-
by-default (see §1). We are not concerned with preventing
attributability when correspondents desire it: e.g., for busi-
ness transactions or contracts, correspondents may intention-
ally sign messages to ensure they are binding. Attribution
by journalistic investigation is also outside our threat model:
confirmation of selected documents by careful investigation
is possible even with handwritten letters, but the current sys-
temic attributability facilitates scalable, malicious attribution
far beyond the handful of high-profile messages that might be
published after arduous manual verification.

3.1 Defining Non-Attributability
We define email non-attributability as a game involving an
email protocol E = (Email,VEmail), adversary A , simula-
tor S , and distinguisher D . An email protocol E is a pair
of algorithms, run by the email sender S and recipient(s)
R respectively. For an email server S with internal state s,6

e← Emails(S,R,m,µ, t) denotes the information (bitstring)
transmitted when S sends R an email with message m and
metadata µ at time t.7 The recipient server R, upon receiving e,

6While this definition refers to “internal state s” for generality, the state s
essentially represents secret key material.

7Technically, e may not be the string that R eventually receives, as parties
other than the sender (e.g., MTAs) routinely participate in email transmission

runs VEmail(e), which outputs a single bit indicating whether
to accept the email as legitimate or reject it as spoofed.

Intuitively, we require indistinguishability between a legiti-
mate email e← Emails(S,R,m,µ, t) and a “fake” email that
was created without access to the sending server at all. To
model this, we consider a simulator S that “aims” to create
such an email without s, and our security definition requires e
to be distributed indistinguishably from S ’s output.

This paper considers two definitions of non-attributability.
Recipient non-attributability (Definition 5) considers a sim-
ulator that has access to a particular recipient’s email server,
and is required to output email from any sender to that re-
cipient. ∆-universal non-attributability (Definition 6) is an
incomparable definition whose simulator is required to output
email from any sender to any recipient while having access to
neither email server. Formal definitions are in Appendix A.
Relation to the threat models. ∆-universal non-
attributability achieves non-attributability against after-
the-fact attacks (Threat Model 1) for all emails sent and
received at least ∆ before the server is compromised.

Combining recipient non-attributability and ∆̂-universal
non-attributability yields non-attributability against real-time
attacks (Threat Model 2). A real-time attacker with ongoing
access to an email server can easily make the fact of his
access evident by immediately publishing all emails he sees
(within time ∆̂ of receipt), but will be unable to convince
third parties of any given email’s authenticity since the fact
of his access to the server allows him to forge emails in real
time, under Definition 5. For allegedly compromised emails
from more than ∆̂ ago, an attacker’s credibility is even lower,
since for such past timestamps anyone with internet access
can generate seemingly validly signed emails, even without
breaking into any email server at all, under Definition 6. The
two definitions are complementary and incomparable.
Necessity of recipient forgeries. It may seem a counterintu-
itive or risky design choice to enable real-time email forgery
in any part of the system. If forgery is restricted only to recip-
ients forging emails to themselves, as in our definition, there
is no spam/spoofing vulnerability — but given the choice,
one might avoid introducing any forging capability at all, in
the interest of a simpler and easier-to-analyze system. How-
ever, some sort of real-time forging capability by recipients is
definitionally necessary to achieve non-attributability against
real-time attacks: if the recipient cannot forge in real time,
then any third party to whom a recipient server passes emails
in real time must be convinced of the emails’ authenticity.

and may influence the information en route. For simplicity, our notation
glosses over this detail and uses EmailS(· · ·) to refer both to the string S sends
and the string R receives. Also, this notation assumes that if an email has
multiple recipients, each recipient receives the same information; this is true
in the current email system but only some of our protocols. The possibility
of different recipients receiving different information is elaborated in §5.3,
and the notation can easily be tweaked to accommodate this, by treating R as
a tuple and having Email output a tuple of strings. For simplicity, however,
we use the single-recipient notation for most of the exposition.

Other inherent model constraints. A practical consequence
of recipient non-attributability is that a recipient R’s email
server can, unknown to R, create fraudulent messages that
appear to be legitimate emails from any sender to R, and
deliver them to R. As discussed §3, the current email system
necessitates heavy client-server trust. In this context, recipient
non-attributability does not meaningfully increase the trust a
client places in her email server. For example, email servers in
the current system could (and often do) omit DKIM headers
when delivering emails to clients: this effectively implies the
ability to deliver fake messages.

Also, we note that both definitions allow for strong, persis-
tent attackers to convince others of the very fact that they have
ongoing access to a particular email account. The definitions
guarantee that even so, such attackers cannot make credible
claims about email contents, since they gain the ability to fal-
sify emails by the very fact of their access. That attackers with
ongoing access can prove their access is unavoidable since
universal forgeability is incompatible with spam resistance
for too small ∆, as discussed above.
Adversarial secure hardware at recipient. The requirement
of spam- and spoofing-resistance means that any simulator
S satisfying Definition 5 must use the recipient R’s secret
state r: in order to prevent spam, real-time forgery must be
limited to messages whose recipient is the forger herself. This
suggests that recipient non-attributability would lose meaning
in an extreme situation where every use of r can be monitored
and attested to, since then an attacker could prove that S
was never invoked on r. This might be plausible assuming
secure hardware, e.g., by generating and monitoring all uses
of r within a secure enclave (as suggested in [32]) — but
even then, such an attack would likely only be feasible by the
unlikely attacker who has designed her recipient email server
with this unlikely configuration from its very setup. We note
this possibility for completeness, but such attacks are outside
our threat models, as mentioned earlier in §3.
Malicious intermediaries and traffic logging. Although our
threat models focus on malicious recipient servers (as dis-
cussed earlier in §3), Definition 5 actually provides a mean-
ingful, though limited, guarantee against malicious interme-
diaries (MTAs) as well. If a malicious MTA were to log all
traffic and publish it in real time (perhaps even timestamped
in a trustworthy way for future reference), in a system with
immediate recipient forgeability, observers of the publications
would still be unconvinced of: (1) whether any email the MTA
claims is genuine (unforged) is really genuine, since the MTA
could have omitted evidence of forgery, and (2) whether the
MTA omitted any genuine emails from its publications.
Why (sometimes) settle for weaker non-attributability?
KeyForge and TimeForge achieve only non-attributability
against after-the-fact attacks, and their enhanced versions
KeyForge+ and TimeForge+ are non-attributable against both
after-the-fact and real-time attacks. Yet we consider KeyForge
to be our main protocol and the most realistic proposal for de-
ployment. In practice, the enhanced protocols’ (unavoidable)

interactivity and other overhead would often be compelling
reasons to prefer the simpler base protocols except in contexts
where addressing real-time attacks (or malicious intermedi-
aries) is of heightened concern.

Relation to deniability definitions in other contexts. The
cryptographic literature features many works on deniability of
signatures and authentication, including (but not at all limited
to) [25, 26, 36, 41, 45]. Our constructions could be seen as a
practical instantiation of a deniable signature scheme subject
to tight systems-based requirements.

4 Forward-Forgeable Signatures

Definition 1 formalizes forward-forgeable signatures (FFS).
They are a new primitive that this paper introduces, and are
an essential building block for our proposed protocols. Infor-
mally, FFS are signature schemes equipped with a method to
selectively “expire” past signatures by releasing expiry infor-
mation that makes them forgeable. In an FFS, each signature
is made with respect to a tag τ, which is an arbitrary string (in
our setting, a timestamp). Expiry information can be released
with respect to any tag or set of tags. FFS have correctness and
unforgeability requirements similar to standard signatures, as
well as a new requirement, forgeability on expiry, that has no
analogue in standard signatures.

Definition 1 (FFS). A forward-forgeable signature scheme
(FFS) Σ is implicitly parametrized by message space M
and tag space T , and consists of five algorithms Σ =
(KeyGen,Sign,Verify,Expire,Forge).

SYNTAX:

• KeyGen(1κ) takes as input a security parameter8 1κ and
outputs a key pair (vk,sk).

• Sign(sk,τ,m) takes as input a signing key sk, a tag τ ∈T ,
and a message m ∈M , and outputs a signature σ.

• Verify(vk,τ,m,σ) takes as input a verification key vk, a
tag τ ∈ T , a message m ∈M , and a signature σ, and
outputs a single bit indicating whether or not σ is a valid
signature with respect to vk, m, and τ.

• Expire(sk,T) takes as input a signing key sk and a tag set
T ⊆T , and outputs expiry info η.

• Forge(η,τ,m) takes as input expiry info η, a tag τ ∈ T ,
and a message m ∈M , and outputs signature σ.

REQUIRED PROPERTIES:

1. Correctness and unforgeability are straightforward adap-
tations of standard definitions. See Appendix B.

2. Forgeability on expiry: For all m ∈M ,T ⊆ T , for any
τ ∈ T , for any “distinguisher” algorithm D , there is a

8Technically, all five algorithms take 1κ as an input, and M and T may
be parametrized by κ. For brevity, we leave this implicit except in KeyGen.

negligible function ε such that for all κ,

Pr

(vk,sk)← KeyGen(1κ)
σ0← Sign(sk,τ,m)
η← Expire(sk,T)
σ1← Forge(η,τ,m)
b←{0,1}
b′←D(σb,η)

: b = b′

≤ 1/2+ ε(κ) .

That is, D must not be able to distinguish whether a sig-
nature was produced using Sign or Forge, even in the
presence of the expiry information η.

Succinctness The succinctness of an FFS is a measure of the
efficiency of disclosure in terms of the size of expiry info
per tag expired. Concretely, in our application, succinctness
measures how expiry info scales as more non-attributable
emails are exchanged over time. KeyForge uses a construction
of FFS based on hierarchical identity-based signatures (§4.1),
which achieves logarithmic succinctness.

Definition 2. Let z : N→ N. Let S ⊂ P(T) be a set of sets
of tags. A forward-forgeable signature scheme Σ is (S,z)-
succinct if for any T ∈ S, there is a negligible function ε such
that for all κ,

Pr
(vk,sk)←KeyGen(1κ)

[∣∣Expire(sk,T)
∣∣≤ z(|T |)

]
≥ 1− ε(κ) .

4.1 FFS Construction from (Hierachical) IBS
We first outline a simple FFS construction BasicFFS based on
identity-based signatures (IBS) [47], as a stepping stone to our
main construction from hierarchical IBS (HIBS). The next
paragraph assumes familiarity with standard IBS terminology;
readers unfamiliar with IBS may skip ahead.

Let tags in the FFS correspond to identities in the IBS.
BasicFFS.KeyGen outputs IBS master keys. The BasicFFS
signing and verification algorithms for tag τ respectively in-
voke the IBS signing and verification algorithms for identity
τ. BasicFFS.Expire outputs the secret key for each input tag
τ ∈ T , and BasicFFS.Forge uses the appropriate secret key
from the expiry information to invoke the IBS signing al-
gorithm. This simple solution has linear succinctness. By
leveraging hierarchical IBS (HIBS), our main construction
achieves logarithmic succinctness, as described next.

Definition 3. A hierarchical identity-based signature scheme
HIBS is parametrized by message space M and identity
space I = {I`}`∈N, and consists of four algorithms HIBS=
(Setup,KeyGen,Sign,Verify) with the following syntax.
• Setup(1κ) takes as input a security parameter9 and out-

puts a master key pair (mvk,msk).
• KeyGen(sk~id , id) takes as input a secret key sk~id for a

tuple of identities ~id = (id1, . . . , id`) ∈I1×·· ·×I` and
an additional identity id ∈ I`+1 and outputs a signing
key sk~id′ where ~id′ = (id1, . . . , id`, id). The tuple may be
empty (i.e., `= 0): in this case, sk() = msk.

9Technically, all four algorithms take 1κ as an input, and M and I may
be parametrized by κ. For brevity, we leave this implicit except in Setup.

• Sign(sk~id ,m) takes as input a signing key sk~id and a mes-
sage m ∈M , and outputs a signature σ.

• Verify(mvk,~id,m,σ) takes as input master verification key
mvk, tuple of identities ~id, message m∈M , and signature
σ, and outputs a single bit indicating whether or not σ is
a valid signature with respect to mvk, ~id, and m.

A depth-L HIBS is a HIBS where the maximum length of
identity tuples is L, i.e., the identity space is I = {I`}`∈[L].

Definition 3 establishes only syntax; for (standard) formal
correctness and security definitions, see, e.g., [29].

Definition 4. For an identity space I = {I`}`∈N, we say ~id
is a level-` identity if ~id ∈I1×·· ·×I`. For any `′ > `, let ~id
be a level-` identity and ~id′ be a level-`′ identity. We say that
~id′ is a sub-identity of ~id if ~id is a prefix of ~id′. If moreover
`′ = `+1, we say ~id′ is a immediate sub-identity of ~id.

Deriving subkeys Given a master secret key of a HIBS, it is
possible to derive secret keys corresponding to level-` iden-
tities for any `, by running KeyGen ` times. By a similar
procedure, given any secret key corresponding to a level-`
identity ~id, it is possible to derive any “subkeys” thereof,
i.e., secret keys for sub-identities of ~id. For our construc-
tion, it is useful to name this (simple) procedure: we define
HIBS.KeyGen? in Algorithm 1. We write the randomness
ρ1, . . . ,ρ` of HIBS.KeyGen? explicitly.

Algorithm 1 HIBS.KeyGen?

Input: sk, `,~id = (id1, . . . , id`′) . Require: `≤ `′

Randomness: ρ1, . . . ,ρ`′

for j = `+1, . . . , `′ do
sk← HIBS.KeyGen(sk, id j;ρ j)

return sk

Succinctly representing expiry information Given any set
T of tuples of identities, the simplest way to make signatures
with respect to T forgeable would be to release the secret key
corresponding to each ~id ∈ T , much as in BasicFFS:

η =
{

sk~id = HIBS.KeyGen?(msk,0,~id)
}
~id∈T

. (1)

However, leveraging the hierarchical nature of HIBS, η can
often be represented more succinctly than (1). Based on the
fact that Algorithm 1 allows the derivation of any subkey,
we make two optimizations. First, before computing (1), we
delete from T any ~id ∈ T that is a sub-identity of some ~id′ ∈ T .
Secondly, if there is any ~id′ = (id1, . . . , id`) ∈I1×·· ·×I`

such that every immediate subkey of ~id′ is in T (i.e., ∀id`+1 ∈
I`+1, (id1, . . . , id`, id`+1) ∈ T), then all sub-identities of id′

can be removed from T and replaced by id′ before computing
(1). Such replacement is permissible only when every possible
subkey of id′ is derivable from T : otherwise, adding id′ to T
would implicate additional subkeys outside T .

These two optimizations yield an algorithm Compress,
which takes as input a set of identity tuples T , and outputs a
(weakly) smaller set of identity tuples T ′ such that knowledge
of the secret keys corresponding to T ′ enables computing
valid signatures with respect to exactly the identity tuples in
T . HIBS security guarantees that even given T ′, signatures
for identity tuples not in T remain unforgeable. Next, we de-
scribe how Compress works using a tree-based representation
of identity tuples (a formal specification is given in the full
version [48]).
Tree representation It is convenient to think of identity tu-
ples represented graphically in a tree. A node at depth ` repre-
sents a tuple of ` identities (the root node is depth 0). The set
of all depth-` nodes corresponds to the set of all `-tuples of
identities. The branching factor at level ` is |I`+1|. Given a
secret key for a particular node (i.e., identity tuple), the secret
keys of all its descendant nodes are easily computable using
HIBS.KeyGen?. (The secret key for the root node is the mas-
ter secret key.) In this language, Compress simply takes a set
T of nodes and returns the smallest set T ′ of nodes such that
(1) all nodes in T are descendants of some node in T ′ and (2)
no node not in T is a descendant of any node in T ′.

Our construction of FFS based on HIBS follows.

Construction 1. LetHIBS be a depth-L HIBS10 with message
space M and identity space I = {I`}`∈[L]. Let O be a ran-
dom oracle,11 and for any tuple~τ = (τ1, . . . ,τ`), let ~O(~τ) =
(O(τ1), . . . ,O(τ`)). For ` ∈ [L], define T` = I1× ·· · ×I`.
We construct a FFS Σ with message space M and tag space
T =

⋃
`∈[L]T`, as follows.

• Σ.KeyGen(1κ): output (vk,sk)← HIBS.Setup(1κ).
• Σ.Sign(sk,~τ = (τ1, . . . ,τ`),m):

let sk~τ = HIBS.KeyGen?(sk,0,~τ; ~O(~τ))
and output σ← HIBS.Sign(sk~τ,m).

• Σ.Verify(vk,~τ,m,σ): output b← HIBS.Verify(vk,~τ,m,σ).
• Σ.Expire(sk,T): let T ′ = Compress(I ,T); output

η=
{
(~τ,sk~τ) : sk~τ = HIBS.KeyGen?(sk,0,~τ; ~O(~τ))

}
τ∈T ′

.

• Σ.Forge(η,τ,m): if there exists skτ′ such that (τ′,skτ′)∈ η

and τ′ is a prefix of τ, let ` be the length of τ′,
let sk~τ = HIBS.KeyGen?(skτ′ , `,~τ; ~O(~τ))
and output σ← HIBS.Sign(sk~τ,m); otherwise, output ⊥.

Theorem 1. If HIBS is a secure HIBS, Construction 1 instan-
tiated with HIBS is a FFS with logarithmic succinctness for
sequentially ordered tag expiry. (Formal statement and proof
is in the full version [48].)

Discussion of alternative approaches Forward-secure sig-
natures (FSS) bear some resemblance to FFS, but have a

10The depth need not be finite, but we consider finite L for simplicity.
11The construction is presented in the random oracle model for simplicity,

but does not require a random oracle: the random oracle can be replaced
straightforwardly by a pseudorandom function (PRF) where the PRF key is
made part of the HIBS secret key.

different goal: namely, enabling efficient key updating while
preventing derivation of past keys from present and future
keys. In contrast, our setting requires that present and future
keys cannot be derived from past keys. (See Appendix C for
more detailed comparison.) One could build a FFS from a FSS
by computing a long list of secret keys and then using them in
backwards order. Using techniques of [23, 35], a sequence of
keys could moreover be stored with logarithmic storage and
computation to access a key. However, this optimization is
only designed for contiguous sequences of keys; HIBS-based
schemes allow for some succinct non-sequential key release
and thus support more nuanced tag structures. Still, for certain
applications, e.g., postquantum sequential key release, an FFS
based on a FSS such as XMSS [13] could be useful.

The requirements of FFS also have some similarity to
timed authentication. The TESLA timed authentication pro-
tocol [43, 44] considers releasing authentication (MAC) keys
following a delay after sending the payload, in the broadcast
authentication context. Such delayed verification is untenable
for email for several reasons, even beyond the inconvenience
of waiting 15 minutes for email delivery. Email’s store-and-
forward nature (see §2.2) means multiple MTAs may need to
verify emails before forwarding (e.g., for spam filtering): if
the first MTA waits to verify before forwarding, the next MTA
will be unable to verify because the delay has rendered the
authentication forgeable. Also, the inability to discard incom-
ing spam before a time delay may increase denial-of-service
vulnerability, especially for smaller email providers.

5 Our Protocol Proposals

5.1 KeyForge
KeyForge consists of two components: (1) replace the digital
signature scheme used in DKIM with a succinct FFS; and
(2) email servers periodically publish expiry information. In
this section, we assume all algorithms have access to a global
publication mechanism or bulletin board (as noted in §3).
FFS configuration for KeyForge. Figure 2 illustrates Key-
Forge’s key hierarchy. KeyForge is based on an L-level tag
structure, corresponding to identity space I = {I`}`∈[L]
where the level-L identities represent 15-minute time chunks
spanning a 2-year period. We use the following intuitive 4-
level configuration for ease of exposition, but as discussed
in §6, it is preferable for efficiency to keep |I`| equal for all
` ∈ [L].

I1 = {1,2} representing a 2-year time span
I2 = {1, . . . ,12} representing months in a year
I3 = {1, . . . ,31} representing days in a month
I4 = {1, . . . ,96} representing 15-minute chunks of a day

A tag τ = (y,m,d,c) ∈I1×I2×I3×I4 corresponds to a
15-minute chunk of time. The 15-minute chunks are contigu-
ous, consecutive, and disjoint, so that any given timestamp

is contained in exactly one chunk. τ(t) denotes the unique
4-tuple tag (y,m,d,c) that represents the chunk of time con-
taining a timestamp t, and t @ τ denotes that τ represents a
chunk of time containing timestamp t.

MPK
2019

01
01

C1 Cn

. . .

. . .

.

2020
. . .

.

12
. . . 30

C1 Cn ∆ Time Chunk

Days
Months
Years
MPK

.

Figure 2: KeyForge Hierarchy Layout

KeyForge requires each signature at time t to be with re-
spect to a tag (timestamp) t + ∆̂. The tag is sent in the email’s
header, and used for verification at the receiving server. Al-
gorithm 2 specifies KeyForge’s signing and verification (key
generation is identical to that of the underlying FFS).

Algorithm 2 KeyForge.Sign and KeyForge.Verify

t = CurrentTime()
function KeyForge.Sign(sk,m,∆)

return (τ(t +∆),σ← FFS.Sign(sk,τ(t +∆),m))

function KeyForge.Verify(vk,m,τ,σ)
return t @ τ AND FFS.Verify(vk,τ,m,σ)

Then we build an email protocol EKF = (Email,VEmail)
as follows. Let (vk,sk) be the key pair of a sending
server. Emailsk(S,R,m,µ, t) outputs (ζ,τζ,σζ) where ζ =

(S,R,m,µ), (τζ,σζ)← KeyForge.Signt(sk,ζ, ∆̂), and the sub-
script t denotes an execution of KeyForge.Sign at time t.
VEmail(ζ,τζ,σζ) runs KeyForge.Verify(vk,ζ,τζ,σζ) and out-
puts the result (where the recipient obtains vk by looking up
S’s key in DNS).

Efficient tree regeneration from private keys. A key fea-
ture of our FFS construction is that the private keys from
children (e.g., day-keys) are easy to generate from parent
keys (e.g., the MSK). This is not implied by the definition of
HIBS,12 and is essential for succinct expiry of entire portions
of the tree (e.g., a year) by disseminating a single key. Fur-
ther, regeneration can enhance security and availability: to
limit key exposure, organizations could store the MSK in an
HSM disconnected from the Internet, and keep only a child
key pair in the MSA, thereby mitigating damage in case of
compromise and allowing recovery from failure.
Where to publish expiry information? Regeneration allows
KeyForge to have succinct expiry information; the number of
private keys necessary to represent all expired chunks depends
on the tree’s structure (see §6), but amounts to less than 4 KB

12The definition of HIBS is compatible with this property, but does not
require it. Constructions typically have randomized subkey generation pro-
cesses so do not have reproducible child keys.

for reasonable configurations. In contrast, the analogous con-
struction based on non-hierarchical IBS would have expiry
information growing linearly throughout a (two-year) master-
key lifespan, resulting in megabytes of expiry information.

Small expiry information means ease of distribution. While
our implementation uses a simple public-facing webserver,
one could imagine posting via DNS TXT records, public
blockchains, or in outgoing email headers. Slow but perma-
nent techniques (e.g., a blockchain) for keys higher up in
the hierarchy (e.g., a year) could ensure that such keys are
permanently available.
When to publish expiry information? KeyForge requires
email servers to publish expiry information at regular intervals.
A natural option is to publish expiry information every 15
minutes; to publish the expiry information corresponding to
each chunk c at the end of the time period that c represents.

Publishing every 15 minutes yields the finest granularity
of expiry possible under the basic four-level tag structure.
Based on a server’s preference, it could release information
at longer intervals (e.g., days) or shorter ones. In case of an
attack, an adversary would be able to convince third parties
of the authenticity of all emails in the current interval (e.g.,
the current day), so risk aversion prefers shorter intervals.

Server misconfiguration and clock skew may cause minor
clock discrepancies between the MSA and MDA. To account
for this, we delay publishing “expired” keys by 5 minutes.
Although in practice most emails are received very quickly,
the SMTP RFC [37] has a very lax give-up time of 4 days. To
get a rough idea of how quickly emails tend to be delivered,
we computed the time differences from the first Received
header to the last in the Podesta email corpus [56],13 and
found that, of the 48,246 messages with parseable Received
timestamps, over 99% (47,349) took less than 12 minutes.

While expiry time is a configurable parameter of KeyForge
(e.g., by administrators), keeping it short is advisable to min-
imize time until universal forgeability. We leave a detailed
study of email delivery times in practice to future work, while
noting that such a study might support considerably reducing
our conservative 15 minutes, and/or tailoring our approach to
specific delay-prone situations. For example, delays are often
caused by expected receiving-server outages (e.g., for server
updates), which might be resolved by using a DMARC-like
DNS record to signal to the sender to hold messages until later.
Anti-spam techniques such as greylisting can delay email by
15 minutes more than usual; to address this, we can add 17
minutes’ leeway when first sending to a new domain.

We do not fully detail remediation procedures for timeouts,
but note that similar authentication failures happen under
DKIM and are commonly resolved via feedback loops such
as Authentication Failure Reporting [27]. Shortening our ex-
piry time is tricky given potentially adversarial routing delays:

13Beyond the irony, we chose the Podesta email corpus as it was distributed
intact with attachments, and thus arguably more representative of a realistic
user’s email distribution than other public datasets.

providing TCP-like flow control would be systematically pos-
sible, but we should also account for malicious MTAs trying
to prolong messages’ unforgeability. A hard-cutoff maximum
would likely be advisable.
Why 15-minute chunks? The time period associated with
each leaf node is the maximum granularity of expiry infor-
mation release. ∆̂ is a lower bound on chunk size: since ∆̂

represents email delivery time, publishing expiry information
more often does not make sense.
Why a 2-year public key lifetime? Rotating keys is good
practice; for operational reasons, the M3AAWG recommends
DKIM key rotation every 6 months [39]. However, recog-
nizing that, realistically, DKIM keys often last more than 6
months, our evaluation assumes a 2-year period.
How many levels? The optimal L depends on a trade-off
between computation time and expiry succinctness; see §6.
Flexible expiry policies The basic tag structure described
above is customizable: e.g., an extra level I` might represent
an email’s “sensitivity,” allowing sensitive emails to expire
faster. Alternatively, one might want certain emails to expire
more slowly or never (e.g., bank/employer emails or con-
tracts). KeyForge is highly configurable: after the first four
levels, different email servers’ policies need not be consistent.

5.2 TimeForge
KeyForge’s main limitation is that it requires signers to con-
tinuously release key material. Wide distribution can pose a
practical challenge; users must depend on their provider to
perform this task reliably. Unreliable distribution would limit
a system’s realistic deniability.

TimeForge takes a different approach that eliminates re-
liance on follow-up action by signers. TimeForge leverages a
publicly verifiable timekeeping service (PVTK), as defined in
§3. In this section, all algorithms are assumed to have access
to a common PVTK. A PVTK could be realized using various
extant Internet systems, as discussed in more detail in the full
version of this work [48].

The intuition behind TimeForge is straightforward. Let M
be an email message sent at time period t. The sender first
signs each message using a standard SUF-CMA signature
scheme to produce a signature σ. She then authenticates the
message, not directly using σ, but rather using a witness indis-
tinguishable and non-interactive proof-of-knowledge (PoK)
of the (informal) statement: I know a valid sender signature σ

on M OR I know a valid PVTK proof πt+d , for some d ≥ ∆.
Assuming a trustworthy PVTK service, this proof authenti-

cates the message during any time period prior to t +∆. Once
a PVTK proof πt+∆ becomes public, the PoK becomes trivial
for any party to generate. Witness indistinguishability ensures
that a signer’s valid proof is indistinguishable from a “forgery”
later computed using a revealed PVTK proof.
PVTK. A PVTK scheme comprises three algorithms.
• TK.Setup(1λ) takes a security parameter λ and outputs a

set of public parameters params and a trapdoor sk.

• TK.Prove(sk, t) takes as input sk and the current time
epoch t, and outputs a proof πt .

• TK.Verify(params, t,πt) on input params, a time period
t, and the proof πt , outputs whether πt is valid.

Correctness and Security. Correctness is straightforward. ∆-
PVTK security requires that an adversary with a PVTK oracle
must not be able to produce a valid proof for some time period
tmax+∆ (except with negligible probability) where tmax is the
largest oracle query, and ∆ > 0 is a constant parameter.
Realizing a PVTK service. A simple PVTK system can be
constructed using a single server that maintains a clock, and
periodically signs the current time using an SUF-CMA sig-
nature (our implementation does this). While conceptually
simple, deploying this solution at scale is likely to be costly,
and may suffer denial-of-service and network-based attacks.
A better approach might construct a PVTK from existing In-
ternet services: in the full version of this work [48] we outline
proposals based on OCSP servers, certificate transparency,
randomness beacons, proof-of-work-based blockchains, and
verifiable delay functions.
A basic TimeForge signature scheme. The TimeForge
scheme consists of four algorithms: TF.Keygen, TF.Sign and
TF.Verify, and TF.Forge. We assume a PVTK scheme with
parameters params and an SUF-CMA signing algorithm Sig.

• TF.Keygen(1λ, params). Run Sig.Keygen(1λ) to gener-
ate (pk,sk) and output PK = (pk, params), and SK = sk.

• TF.Sign(PK,SK,M, t,∆). Parse PK = (pk, params). On
input a message M and a time period t, compute σ←
Sig.Sign(SK,M‖t‖∆) and the following WIPoK:14

Π = NIPoK{(σ,s,π) : Sig.Verify(pk,σ,M‖t‖∆) = 1 ∨
(TK.Verify(params,π,s) = 1 ∧ s≥ t +∆)}

Output σtf = (Π, t,∆).
• TF.Verify(PK,M,σtf). Parse PK = (pk, params) and

σtf = (Π, t,∆), verify the proof Π w.r.t. public values
t,∆, pk,M, and output the verification result.

TF.Forge takes as input a PVTK proof πs for s≥ t +∆.

• TF.Forge(PK,M, t,s,∆,πs). parse PK = (pk, params)
and compute the NIPoK Π described in the TF.Sign algo-
rithm, using the witness (⊥,s,πs). Output σtf = (Π, t,∆).

Now we can define ETF analogously to EKF from
§5.1. Let us define the TimeForge email protocol ETF =
(Email,VEmail) as follows. Let (PK,SK) be the key pair
of a sending server. EmailSK(S,R,m,µ, t) outputs (ζ,σζ)

where ζ = (S,R,m,µ) and σζ ← TF.Sign(PK,SK,ζ, t, ∆̂).
VEmail(ζ,σζ) runs TF.Verify(PK,ζ,σζ) and outputs the re-
sult (where the recipient obtains PK by looking up S’s key in
DNS.) Appendix D discusses possible concrete constructions
of TimeForge.

14Here we use Camenisch-Stadler notation, where the witness values are
in parentheses () and any remaining values are assumed to be public.

5.3 KeyForge+ and TimeForge+

KeyForge+ (resp. TimeForge+) consists of KeyForge (resp.
TimeForge) with two modifications: a forge-on-request proto-
col and per-recipient-domain signatures, described next.
1. Forge-on-request protocol. We add a protocol F (detailed
in Algorithm 3) by which an email server S accepts real-
time requests for specified email content to be sent to the
requester (and nobody else). We write AF to denote that an
algorithm A has access to email forgeries via F. The forge-
on-request protocol ensures that all users have the capability
to forge emails to themselves in real time, directly achieving
immediate recipient forgeability. The requirement that the
recipient be the requester is crucial: each requester is enabled
to forge emails only to herself.

The requester’s email server attests to the requesting
client’s identity (similarly to DKIM). We note that a mali-
cious server could unauthorizedly sign requests for any client
account it controls. This is outside our threat model, and such
behavior is equally possible under DKIM (see also “Client-
server trust” under §3): that is, today’s email ecosystem al-
ready relies on servers to attest honestly to their clients’ iden-
tities, and allows servers to spam their own clients (a behavior
that might not keep them many clients).
2. Per-recipient-domain signatures. In KeyForge+ and
TimeForge+, the MSA signs each outgoing email once per re-
cipient domain: producing a signature σD← Sign(sk,(D,m))
for each recipient domain D, where sk is the signing key
and m is the email data that the sending server would have
signed under DKIM (or KeyForge or TimeForge). Then, it
sends each recipient domain D the email and (only) σD. Per-
recipient-domain signatures prevent attackers from using the
forge-on-request protocol to send spam/spoofing emails to
co-recipients on forged emails. Adida et al. [2] previously
proposed per-recipient signatures in a very similar context.

We define the email protocols EKF+ and ETF+ accordingly.
EKF+.Email(S,(R1, . . . ,RN),m,µ, t) outputs (e1, . . . ,eN)
where ei ← EKF.Email(S,Ri,m,µ, t); and EKF+.VEmail is
just as in EKF. ETF+ is defined analogously, w.r.t. ETF.

Theorem 2. EKF and EKF+ are ∆̂-universally non-
attributable (Definition 6). Assuming email servers adopt the
forge-on-request protocol F, EKF+ is further non-attributable
for recipients (Definition 5). (Proof is in the full version [48]
due to space constraints.)

Theorem 3. Assuming a PVTK, ETF and ETF+ are ∆̂-
universally non-attributable and ETF+ is further non-
attributable for recipients.

On the efficiency of KeyForge+/TimeForge+ Per-recipient-
domain signatures add sender-side (but not receiver-side)
overhead compared to schemes like DKIM, KeyForge, or
TimeForge. While the overhead is unlikely to be prohibitive
given the efficiency of signing, it must be taken into account
when evaluating KeyForge+ and TimeForge+ (see Section 6).

Monthly KeyForgeB KeyForgeB σ Monthly KeyForgeC KeyForgeC σ DKIM RSA2048 σ TimeForge σ

30×65 = 1950 98 30× (64+32) = 2880 64×2+32 = 160 256 841

Table 1: Bandwidth costs (in bytes) of KeyForgeB, KeyForgeC, and DKIM with RSA. σ denotes a signature.

Implementing forge-on-request and per-recipient-domain sig-
natures would entail more complexity and significant changes
to the existing email infrastructure, than the base protocols.
While immediate recipient forgeability is desirable for added
protection against real-time attacks (see Threat Model 2), Key-
Forge is a more realistic candidate for near-term deployment
as it is realizable with lighter-weight changes to the existing
system: namely, replacing DKIM’s signature scheme, and
unilateral server publication of small amounts of data.
Notation Emails(S,R,m,µ, t) is as defined in §3.1, addition-
ally taking into account that signatures in KeyForge+ and
TimeForge+ are per recipient domain. FReq denotes a special
message to betoken forge requests. For an email address a,
let a.dom denote its domain.

Algorithm 3 Forge-on-request protocol F
Requester (client)
To request an email with message m and metadata µ from
alice@foo.com:
• Send (FReq,m,µ,alice@foo.com) to client’s (i.e., its

own) email server.
Email server (say, bar.com, with secret key s)
On receiving request (FReq,m,µ,a) from own client bob:15

• If a.dom = bar.com:16Let t be the current time. Deliver e
to bob, where e← Emails(a,bob@bar.com,m,µ, t).

• Else: Let σ ← Sign(FReq,m,µ,a,bob).17Send
(FReq,m,µ,a,bob,σ) to server a.dom.

On receiving request (FReq,m,µ,a,b,σ) from server b.dom:
• v← Verify(vk,(FReq,m,µ,a,b),σ), where pk is b.dom’s

public key in DNS.
• If v = 0: Do not respond.
• Else (i.e., v = 1): Let t be the current time. Send

e,e′ to b.dom, where e← Emails(a,b,m,µ, t) and e′ ←
Emails(a,b,m,µ, t− ∆̂).

6 Implementation and Evaluation

We implemented prototypes of KeyForge and TimeForge and
integrated them into Postfix, a common MDA/MSA. Our
code is open source [1]. We performed all benchmarks on
a 2017 MacBook Pro, 15-inch, with an Intel 4-core 3.1GHz
processor and 16GB of RAM. We use the RELIC toolkit’s
[4] implementation of a BN-254 curve. This configuration

15We assume client-server communication is authenticated.
16I.e., if the request is for a forgery from another address in the requester’s

own domain.
17Sign denotes the signing algorithm of any secure signature scheme.

conservatively yields keys with a 110-bit security level [5],
which is on par with the standard 2048-bit RSA. We chose
RELIC due to its support for many pairing friendly curves
and low overhead.

We evaluate two versions of KeyForge instantiated with
different HIBS schemes: (1) KeyForgeB, which uses Gentry-
Silverberg’s “BasicHIDE” bilinear map based scheme [29] us-
ing a BN254 curve and (2) KeyForgeC, which uses certificate
chains on public keys using non-identity-based signatures,
instantiated with Ed25519.18 We also implemented a proto-
type of TimeForge (see Appendix D), which is less efficient;
it is intended as a proof of concept whose practicality will
improve with advances in the underlying proof primitives (an
active area of research). The two KeyForge implementations
share the following bandwidth optimization.
KeyForge bandwidth optimization. HIBS schemes tend to
have relatively large signatures. In KeyForgeB, a signature
must include public parameters for each node on the path
to the current chunk. A public parameter in this configura-
tion is 65B, yeilding a bandwidth of 260B for a four-level
Y/M/D/Chunk tree, resulting in a total of 293B per signature.
KeyForgeC similarly requires an Ed25519 signature between
each node in the hierarchy, and has total signature size of
448B (four 64B path signatures, four 32B public keys, and the
message signature). We optimize bandwidth by precomputing
all path parameters except for the last chunk and store them
in the DNS, along with the MPK. When verifying from a
new server, KeyForge performs a DNS lookup and caches the
result at a cost of 2-3KB per month (see Table 1).

Two components, the keyserver and mail filter, are shared
between all implementations. They are described next.
Mail Filter. The filter ensures that sent emails are properly
formatted, verifies incoming emails, and communicates the
results to the MDA/MTA. The filter works by intercepting
SMTP requests, adding necessary metadata to outgoing email
headers, and requesting cryptographic operations from the
keyserver. When sending a message, the filter attaches an
expiry time (and other verification information) to the email’s
header, hashes the metadata and message content, forwards
the hash to the keyserver to sign, and finally adds this sig-
nature to the header. On receipt, the filter confirms that the
signature’s hash matches the message and metadata, and for-
wards the signature, sending domain, and expiry timestamp
to the keyserver for verification. If verification fails, the filter
alerts PostFix and the message is dropped.
Keyserver. The keyserver performs signing and verification,
communicates with the mail filter over RPC, and publishes

18The certificate-based approach has been attributed to folklore.

Sign(ms) Sign/s Verify(ms) Verify/s

TimeForge 24.58 49.68 23.24 43
KeyForgeB 0.34 2,932 3.36 298
KeyForgeC 0.13 17,197 0.13 7,541
RSA2048 0.93 1,075 0.05 19,966
Ed25519 0.03 27,001 0.10 9,781

Table 2: Time required for a single operation in millisec-
onds, and the equivalent number of operations per second.

1 2 3 4 5 6 7
Tree Depth

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Ti
m

e
in

S
ec

on
ds

KeyForgeB Signing and Verification Time

Sign Cached

Sign Uncached

Verify Cached

Verify Uncached

Figure 3: KeyForgeB timings

1 2 3 4 5 6 7
Tree Depth

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Ti
m

e
in

S
ec

on
ds

KeyForgeC Signing and Verification Time

Sign Cached

Sign Uncached

Verify Cached

Verify Uncached

Figure 4: KeyForgeC timings

expired keys (for KeyForge) via a simple webserver.

6.1 Evaluation
We evaluate messaging bandwidth, expiry data bandwidth,
and speed. Our primary focus is on comparison with RSA-
2048: it is the signature scheme commonly used in DKIM,
and so a natural benchmark for practicality in the current
email ecosystem. Although more bandwidth-efficient algo-
rithms were approved for DKIM use some months ago, (e.g.,
Ed25519 with a 64 B signature [34]), these schemes appear to
have had limited deployment to date.19 Nonetheless, for com-
pleteness, this section also considers Ed25519 performance.
Bandwidth. Table 1 shows bandwidth costs for various con-
figurations of KeyForge and TimeForge. Both KeyForge im-
plementations have a bandwidth per email that is 42% smaller
than a DKIM RSA-2048 signature.
Speed. To capture the range of KeyForge’s possible perfor-
mance, we considered two cases: (1) where the public key
path is verified from scratch (e.g., in setting up a new server,
or verifying messages from a new domain) and (2) where path
parameters are pre-verified and cached. Figures 3 and 4 show
the results. Signing is largely unaffected by tree depth when
caching. Table 2 provides efficiency microbenchmarks for
KeyForge, TimeForge, and Ed25519 and DKIM’s RSA-2048
via the OpenSSL suite’s benchmark. All KeyForge bench-
marks are for a 4-level tree with caching. Note that experi-
ments were run on a laptop with power lower than a com-
mon server, so our timings may be seen as upper bounds.
Performance scales linearly with the number of cores; our
measurements are for a single core.
Optimizing for KeyForge expiration bandwidth. While
the Y/M/D/Chunk configuration is easy to intuit, an equal
branching factor across tree levels yields a large gain in suc-
cinctness. For example, the average size of expiry info of trees
with an equal branching factor for a 2-year period is 4.5MB,
4KB, or 1.8KB for depths 1, 4, and 7.
Discussion and analysis. We find that KeyForge, especially
KeyForgeC, is likely practical when using DKIM’s RSA-2048
as a benchmark. In both implementations, KeyForge’s signing
time is better than RSA: KeyForgeB and KeyForgeC sign 2.7
and 16 times faster than RSA, respectively. KeyForge further

19E.g., as of October 2019, Gmail and Exchange use only RSA-2048.

beats RSA on signature bandwidth per email, at just 63% or
less of RSA signature size in the worst case. RSA outperforms
KeyForge only on verification time: KeyForgeC is still emi-
nently practical, with verification a factor of two slower than
RSA, whereas KeyForgeB is an order of magnitude slower.

Verification time is unlikely to affect KeyForge’s viability,
as other factors such as hashing, I/O, and network latency are
likely to dominate. Any hash-and-sign scheme must read the
message into memory and perform a hash, so to provide a ball-
park measurement of I/O and hashing, we timed OpenSSL’s
SHA256 on the Podesta corpus [56], stored on-disk. The aver-
age time required was 10.2ms (2.689ms std),20 indicating that
hashing and I/O is surprisingly impactful. Network latency
is significant as well — SMTP requires that a sending MTA
perform a minimum of four round trips per email.21 A highly
optimistic round-trip time of 5ms would yield of 20ms per
email, not including time to send message content.

The choice between KeyForgeB and KeyForgeC is likely
implementation dependent: while KeyForgeB requires less
bandwidth, its drawbacks are speed and use of non-IETF-
standardized curves (unlike KeyForgeC).
A note on adoption. With an ecosystem as unwieldy as email,
a reasonable concern might be that any large-scale update
would be difficult. That said, now is an opportune time to
propose such changes: the IETF has recently approved a new
standard that will encourage MTAs to begin updating their
DKIM signing and verification algorithms [34]. Further, if the
community were to endorse a new standard, one could imag-
ine large email providers (e.g., Google) displaying favorable
security indicators akin to to Gmail’s TLS indicators [30].
Such tactics have been successful in the context of HTTPS.

We have consulted members of the IETF, W3C, and the
Gmail Security team, and optimized and evaluated our proto-
types with their performance priorities and concerns in mind.

Acknowledgements

We are grateful to Jon Callas for helpful discussions about
motivations for email non-attributability and our scheme’s

20Email size is often pushed up by HTML formatting, embedded media,
and attachments. Average email size in our corpus is 98 KB (691 KB std).

21SMTP messages require a round trip per command, and each email
requires a MAIL, RCPT, and two DATA commands.

applicability to DKIM, and to Dan Boneh, Daniel J. Weitzner,
John Hess, Bradley Sturt, Stuart Babcock, and Ran Canetti
for their feedback on earlier versions of this work. This work
was supported in part by the William and Flora Hewlett Foun-
dation grant 2014-1601, and by the MIT Media Lab’s Digital
Currency Initiative and its funders. We would like to acknowl-
edge support from the National Science Foundation under
awards CNS-1653110 and CNS-1801479, and a Google Se-
curity & Privacy Award.

References

[1] KeyForge and TimeForge source code. https://
github.com/mspecter/KeyForge.

[2] Ben Adida, David Chau, Susan Hohenberger, and
Ronald L. Rivest. Lightweight email signatures. In
International Conference on Security and Cryptography
for Networks, pages 288–302. Springer, 2006.

[3] Ben Adida, Susan Hohenberger, and Ronald L. Rivest.
Lightweight encryption for email. In Steps to Reducing
Unwanted Traffic on the Internet Workshop, SRUTI’05.
USENIX Association, 2005.

[4] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Ef-
ficient LIbrary for Cryptography. https://github.
com/relic-toolkit/relic.

[5] Diego F. Aranha, Laura Fuentes-Castañeda, Edward
Knapp, Alfred Menezes, and Francisco Rodríguez-
Henríquez. Implementing pairings at the 192-bit secu-
rity level. In International Conference on Pairing-Based
Cryptography, pages 177–195. Springer, 2012.

[6] Associated Press. DKIM verification script. https:
//github.com/associatedpress/verify-dkim.

[7] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and
Anna Lysyanskaya. P-signatures and noninteractive
anonymous credentials. In TCC 2008, 2008.

[8] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and
Anna Lysyanskaya. Compact E-Cash and Simulatable
VRFs Revisited. In Pairing-Based Cryptography ’09,
2009.

[9] Steven Michael Bellovin. Spamming, phishing, authen-
tication, and privacy. 2004.

[10] Dan Boneh and Xavier Boyen. Short signatures with-
out random oracles. In Christian Cachin and Jan L.
Camenisch, editors, Advances in Cryptology - EURO-
CRYPT 2004, pages 56–73, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg.

[11] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short
group signatures. In Matt Franklin, editor, Advances
in Cryptology – CRYPTO 2004, pages 41–55, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[12] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-
the-record communication, or, why not to use PGP. In
Proceedings of the 2004 ACM Workshop on Privacy in
the Electronic Society, WPES ’04, pages 77–84, New
York, NY, USA, 2004. ACM.

[13] Johannes A. Buchmann, Erik Dahmen, and Andreas
Hülsing. XMSS - A practical forward secure signa-
ture scheme based on minimal security assumptions. In
Bo-Yin Yang, editor, Post-Quantum Cryptography - 4th
International Workshop, PQCrypto 2011, Taipei, Tai-
wan, November 29 - December 2, 2011. Proceedings,
volume 7071 of Lecture Notes in Computer Science,
pages 117–129. Springer, 2011.

[14] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on
Security and Privacy (SP), volume 00, pages 319–338.

[15] Jack Burbank, David Mills, and William Kasch. Net-
work Time Protocol Version 4: Protocol and Algo-
rithms Specification. https://tools.ietf.org/
html/rfc5905 [https://perma.cc/428T-HN3Y].

[16] John Callas, Eric Allman, Miles Libbey, Michael
Thomas, Mark Delany, and Jim Fenton. DomainKeys
Identified Mail (DKIM) Signatures.

[17] Jon Callas. [ietf-dkim] Thinking about DKIM
and surveillance. https://mailarchive.ietf.
org/arch/msg/ietf-dkim/eWKbWdYmkX_d2ki_
lAbczVSj8qY [https://perma.cc/DQF6-SQNZ].

[18] Jon Callas. [ietf-dkim] DKIM Key Sizes, Oc-
tober 2016. http://mipassoc.org/pipermail/
ietf-dkim/2016q4/017195.html [https://perma.
cc/7NNX-QJUK].

[19] Jon Callas. [ietf-dkim] DKIM Key Sizes, Oc-
tober 2016. http://mipassoc.org/pipermail/
ietf-dkim/2016q4/017207.html [https://perma.
cc/K8LM-KJS7].

[20] Jan Camenisch, Rafik Chaabouni, and abhi shelat. Ef-
ficient protocols for set membership and range proofs.
In Josef Pieprzyk, editor, Advances in Cryptology - ASI-
ACRYPT 2008, pages 234–252, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[21] Jan Camenisch and Anna Lysyanskaya. Signature
schemes and anonymous credentials from bilinear maps.
In Advances in Cryptology–CRYPTO 2004, 2004.

https://github.com/mspecter/KeyForge
https://github.com/mspecter/KeyForge
https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://github.com/associatedpress/verify-dkim
https://github.com/associatedpress/verify-dkim
https://tools.ietf.org/html/rfc5905
https://tools.ietf.org/html/rfc5905
https://perma.cc/428T-HN3Y
https://mailarchive.ietf.org/arch/msg/ietf-dkim/eWKbWdYmkX_d2ki_lAbczVSj8qY
https://mailarchive.ietf.org/arch/msg/ietf-dkim/eWKbWdYmkX_d2ki_lAbczVSj8qY
https://mailarchive.ietf.org/arch/msg/ietf-dkim/eWKbWdYmkX_d2ki_lAbczVSj8qY
https://perma.cc/DQF6-SQNZ
http://mipassoc.org/pipermail/ietf-dkim/2016q4/017195.html
http://mipassoc.org/pipermail/ietf-dkim/2016q4/017195.html
https://perma.cc/7NNX-QJUK
https://perma.cc/7NNX-QJUK
http://mipassoc.org/pipermail/ietf-dkim/2016q4/017207.html
http://mipassoc.org/pipermail/ietf-dkim/2016q4/017207.html
https://perma.cc/K8LM-KJS7
https://perma.cc/K8LM-KJS7

[22] Charles Cazabon. getmail version 5. http://pyropus.
ca/software/getmail.

[23] Don Coppersmith and Markus Jakobsson. Almost op-
timal hash sequence traversal. In Matt Blaze, editor,
Financial Cryptography, 6th International Conference,
FC 2002, Southampton, Bermuda, March 11-14, 2002,
Revised Papers, volume 2357 of Lecture Notes in Com-
puter Science, pages 102–119. Springer, 2002.

[24] D. Crocker. Internet Mail Architecture, 2009. https:
//tools.ietf.org/html/rfc5598.

[25] Mario Di Raimondo and Rosario Gennaro. New ap-
proaches for deniable authentication. Journal of Cryp-
tology, 22(4):572–615, Oct 2009.

[26] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent
zero-knowledge. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98,
pages 409–418, New York, NY, USA, 1998. ACM.

[27] Hilda L. Fontana. Authentication Failure
Reporting Using the Abuse Reporting For-
mat. https://tools.ietf.org/html/rfc6591
[https://perma.cc/5MTF-ZD8P].

[28] Center for Strategic and International Studies
(CSIS). Significant cyber incidents, 2018. https:
//www.csis.org/programs/cybersecurity-and-
governance/technology-policy-program/other-
projects-cybersecurity.

[29] Craig Gentry and Alice Silverberg. Hierarchical ID-
based cryptography. In Yuliang Zheng, editor, Proceed-
ings of ASIACRYPT 2002, volume 2501 of Lecture Notes
in Computer Science, pages 548–566. Springer, 2002.

[30] Google. Making email safer for you, February 2016.

[31] Jens Groth. On the size of pairing-based non-interactive
arguments. In Marc Fischlin and Jean-Sébastien Coron,
editors, Advances in Cryptology – EUROCRYPT 2016,
pages 305–326, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[32] Lachlan J. Gunn, Ricardo Vieitez Parra, and N. Asokan.
Circumventing cryptographic deniability with remote
attestation, 2019.

[33] HIPAA Journal. United hospital district
phishing attack impacts 2,143 patients, 2019.
https://www.hipaajournal.com/united-
hospital-district-phishing-attack-impacts-
2143-patients/.

[34] J. Levine. RFC 8463 - A New Cryptographic Signature
Method for DomainKeys Identified Mail (DKIM).

[35] Markus Jakobsson. Fractal hash sequence representation
and traversal. Proceedings of the 2002 IEEE Interna-
tional Symposium on Information Theory (ISIT), pages
437–44, 2002.

[36] Markus Jakobsson, Kazue Sako, and Russell Impagli-
azzo. Designated verifier proofs and their applications.
In Proceedings of the 15th Annual International Con-
ference on Theory and Application of Cryptographic
Techniques, EUROCRYPT’96, pages 143–154, Berlin,
Heidelberg, 1996. Springer-Verlag.

[37] John Klensin. RFC5321: Simple Mail Transfer Protocol,
2008.

[38] Murray Kucherawy and Elizabeth Zwicky. Domain-
based Message Authentication, Reporting, and Confor-
mance (DMARC). https://tools.ietf.org/html/
rfc7489.

[39] Kurt Andersen. M3aawg DKIM Key Rota-
tion Best Common Practices | M3aawg, March
2019. http://www.m3aawg.org/DKIMKeyRotation
[https://perma.cc/4WY6-SH8K].

[40] Jeremy B. Merrill. Authenticating Email Using DKIM
and ARC, or How We Analyzed the Kasowitz Emails.
ProPublica, July 2017.

[41] Moni Naor. Deniable ring authentication. In Advances
in Cryptology — CRYPTO 2002, pages 481–498, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[42] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable com-
putation. In Proceedings of the IEEE Symposium on
Security and Privacy. IEEE, May 2013.

[43] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song.
The TESLA broadcast authentication protocol. RSA
CryptoBytes, 5:2–13, 2002.

[44] Adrian Perrig, Dawn Song, Ran Canetti, J. D. Tygar, and
Bob Briscoe. Timed efficient stream loss-tolerant au-
thentication (TESLA): multicast source authentication
transform introduction. RFC, 4082:1–22, 2005.

[45] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How
to leak a secret. In ASIACRYPT, 2001.

[46] Raphael Satter. Emails: Lawyer who met Trump Jr. tied
to Russian officials. The Associated Press, July 2018.

[47] Adi Shamir. Identity-based cryptosystems and signa-
ture schemes. In G. R. Blakley and David Chaum, edi-
tors, Proceedings of CRYPTO ’84, volume 196 of Lec-
ture Notes in Computer Science, pages 47–53. Springer,
1984.

http://pyropus.ca/software/getmail
http://pyropus.ca/software/getmail
https://tools.ietf.org/html/rfc5598
https://tools.ietf.org/html/rfc5598
https://tools.ietf.org/html/rfc6591
https://perma.cc/5MTF-ZD8P
https://www.csis.org/programs/cybersecurity-and-governance/technology-policy-program/other-projects-cybersecurity
https://www.csis.org/programs/cybersecurity-and-governance/technology-policy-program/other-projects-cybersecurity
https://www.csis.org/programs/cybersecurity-and-governance/technology-policy-program/other-projects-cybersecurity
https://www.csis.org/programs/cybersecurity-and-governance/technology-policy-program/other-projects-cybersecurity
https://www.hipaajournal.com/united-hospital-district-phishing-attack-impacts-2143-patients/
https://www.hipaajournal.com/united-hospital-district-phishing-attack-impacts-2143-patients/
https://www.hipaajournal.com/united-hospital-district-phishing-attack-impacts-2143-patients/
https://tools.ietf.org/html/rfc7489
https://tools.ietf.org/html/rfc7489
http://www.m3aawg.org/DKIMKeyRotation
https://perma.cc/4WY6-SH8K

[48] Michael Specter, Sunoo Park, and Matthew Green.
KeyForge: Mitigating Email Breaches with Forward-
Forgeable Signatures. Cryptology ePrint Archive, Re-
port 2019/390, 2019. https://eprint.iacr.org/
2019/390.

[49] Jonathan Stempel and Jim Finkle. Yahoo says all
three billion accounts hacked in 2013 data theft,
2017. https://www.reuters.com/article/us-
yahoo-cyber/yahoo-says-all-three-billion-
accounts-hacked-in-2013-data-theft-
idUSKCN1C82O1.

[50] Michael Thomas. Requirements for a DomainKeys
Identified Mail (DKIM) Signing Practices Protocol.
https://tools.ietf.org/html/rfc5016.

[51] Nik Unger and Ian Goldberg. Deniable key exchanges
for secure messaging. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’15, pages 1211–1223, New York, NY,
USA, 2015. ACM.

[52] Nik Unger and Ian Goldberg. Improved strongly deni-
able authenticated key exchanges for secure messaging.
PoPETs, 2018(1):21–66, 2018.

[53] Wikileaks. Sony Email Leak. https://wikileaks.
org/sony/emails/, 2012.

[54] Wikileaks. The Global Intelligence Files: STRAT-
FOR email leak. https://wikileaks.org/gifiles/
docs/13/1328496_stratfor-.html, 2012.

[55] Wikileaks. Search the DNC Database, July 2016.
https://wikileaks.org/dnc-emails/.

[56] Wikileaks. WikiLeaks: DKIM Verification, nov 2016.
https://wikileaks.org/DKIM-Verification.
html [https://perma.cc/H3SR-YB44].

A Non-attributability definitions

Definition 5 (Recipient non-attributability). Email is non-
attributable for recipients w.r.t. F if there is a PPT simulator
S such that for any sender S and recipient R (with respective
internal states s,r), for any email message m and metadata µ,

Emails(S,R,m,µ, t)≈c S F
r (S,m,µ) ,

where the superscript F denotes black-box or query access
to an interactive functionality F, and the subscript r denotes
that S has access to the recipient server’s internal state r.22

22In fact, our constructions achieve a slightly stronger (i.e., harder to
satisfy) definition where S cannot read r, but has only oracle access to
signatures by R (produced using key material in r). In practice, the latter
requirement may be significantly easier to satisfy, as it is achievable by obtain-
ing login access to an email account rather than compromising the server’s
secrets. However, the definition assumes direct access to r for simplicity.

Definition 6 (∆-universal non-attributability). For ∆ ∈ N, an
email protocol Email is ∆-strongly non-attributable if there is
a PPT simulator S such that for any sender S (with internal
state s) and recipient R, for any email message m, metadata
µ, and timestamp t, the following holds at any time ≥ t +∆:

Emails(S,R,m,µ, t)≈c S (S,R,m,µ, t) .

Definitions 5 and 6 serve to ensure that no attacker can
credibly claim to a third party23 that he is providing her with
authentic emails: the third party is in the role of distinguisher.

Note that Definition 6 is inviable if ∆ < ∆̂. Otherwise, the
spam- and spoofing-resistance provided by DKIM would be
undermined, since any outsider could use the simulator in real
time to send spam email indistinguishable to the recipient
from email actually sent by an honest party. Moreover, as-
suming the essential condition that emails are not universally
forgeable in real time, Definition 6 implies that the behav-
ior of any S must differ (distinguishably) between times
≥ t +∆ and times ≤ t. This is satisfiable only if the view of
S changes between these time intervals: in other words, Def-
inition 6 is satisfiable only if S gains some new information
between these time intervals. In KeyForge and TimeForge,
this additional information is made available to S through
the public bulletin board BB or the PVTK TK, respectively.
Absent some time-dependent exogenous functionality like
BB or TK, Definition 6 is (straightforwardly) unsatisfiable.

B FFS security requirements in full

Formal details of the required properties which were omitted
from Definition 1 are given below.
• Correctness: For all m ∈M ,τ ∈T , there is a negligible

function ε such that for all κ,

Pr

[
(vk,sk)← KeyGen(1κ)
σ← Sign(sk,τ,m)
b← Verify (vk,τ,m,σ)

: b = 1

]
≥ 1− ε(κ) .

• Unforgeability: For any PPT A , there is a negligible func-
tion ε such that for all κ ∈ N,

Pr

 (vk,sk)← KeyGen(1κ)
(τ,m,σ)←A Ssk ,Esk (vk)
b← Verify (vk,τ,m,σ)
b′ = τ /∈ Q′E ∧ (τ,m) /∈ QS

: b = b′ = 1

≤ ε(κ) ,

where Ssk and Esk respectively denote oracles Sign(sk, ·, ·)
and Expire(sk, ·), QS and QE denote the sets of queries
made by A to the respective oracles, and Q′E =

⋃
T∈QE

T .

C FFS vs. FSS

FSS were designed with a different goal from FFS: namely,
to allow efficient key updating while preventing derivation of

23E.g., the general public (if the allegedly stolen emails are released pub-
licly) or a specific interested party (such as a potential buyer or disseminator
of the information).

https://eprint.iacr.org/2019/390
https://eprint.iacr.org/2019/390
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://tools.ietf.org/html/rfc5016
https://wikileaks.org/sony/emails/
https://wikileaks.org/sony/emails/
https://wikileaks.org/gifiles/docs/13/1328496_stratfor-.html
https://wikileaks.org/gifiles/docs/13/1328496_stratfor-.html
https://wikileaks.org/dnc-emails/
https://wikileaks.org/DKIM-Verification.html
https://wikileaks.org/DKIM-Verification.html
https://perma.cc/H3SR-YB44

past keys from present and future keys. In contrast, our setting
requires that present and future keys cannot be derived from
past keys. The only way to achieve this property using an FFS
would be to precompute a long list of secret keys and then
use them in backwards order — this is arguably better than
the simplest solution based on short-lived keys, but storing
the whole list of keys is inefficient and unsatisfactory.
Difference with forward-secure signatures Both FFS and
FSS yield a system of short-lived secret keys all corresponding
to one long-lived public key. However, the definitions differ
in two main ways, described below and depicted in Figure 5.
1. Forward-secure signatures require that past keys cannot

be computed from future keys, whereas forward-forgeable
signatures require that future keys cannot be computed
from past keys.

2. Forward-secure signatures are designed to prevent com-
promise of past signatures by compromising a later secret
key. All FSS secret keys are short-lived and each secret
key must be derivable based solely on the previous short-
lived secret key. Forward-forgeable signatures, in contrast,
may have persistent “master secret key” material used to
generate each short-lived key.

sk1 sk2 sk3 sk4 . . .Forward-secure:

sk1 sk2 sk3 sk4msk . . .Forward-forgeable:

Figure 5: Forward-secure vs. forward-forgeable signatures

D Further Discussion of TimeForge

TimeForge can be realized using a variety of WI and ZK
proof systems, combined with efficient SUF-CMA signature
schemes. For example, a number of pairing-based signature
schemes [7, 8, 21] admit efficient proofs of knowledge of a
signature using simple Schnorr-style proofs [3]. More recent
proving systems, e.g., Bulletproofs [14] and zkSNARKs (e.g.,
[31, 42], admit succinct proofs of statements involving arbi-
trary arithmetic circuits and discrete-log relationships. Using
the latter schemes ensures short proofs, in the hundreds of
bytes, in some cases with a small, constant verification cost.
Thus, even complex PVTK proofs such as block header se-
quences, can potentially be reduced to a succinct TimeForge
signature.

A concrete implementation. For our basic implementation,
which signs a timestamp, we considered several proof systems.
For the relatively simple proof statement used in this scheme,
Bulletproofs are not appropriate for two reasons: (1) the proof
sizes that result exceed 1000 bytes, and (2) these proofs do
not natively support efficient signatures. zkSNARKs produce
bandwidth-efficient signatures, but at a significant cost due
to the need to generate a trusted setup embedding the signa-
ture verification circuit. Based on these considerations, we
propose and evaluate one concrete implementation based on
Schnorr-style proving techniques, made non-interactive using
the Fiat-Shamir heuristic. Our approach implements Time-
Forge using a dedicated server that produces (weak) Boneh-
Boyen signatures [10] over the current time period t, which is
encoded as an integer in Zq. Let g1,g2 be generators of a pair
of bilinear groups G1,G2 of order q. Briefly, a Boneh-Boyen
signature on a time period t comprises a single group ele-
ment σ = g1/x+t

1 , where x represents the signing key, and the
server’s public key is gx

2. Verification is conducted by check-
ing the following pairing equality: e(g1,g2) = e(σ,gx

2gt
2).

Our proposed TimeForge proof of knowledge requires the
following components. First, the prover to provides a Peder-
sen commitment B to the current time period Tcurrent using
randomness r. The proof also reveals the (alleged) true sign-
ing time period Tsigning in cleartext (in case it is different)
and attaches δ. Using these values, the prover employs the
homomorphic property of Pedersen commitments to derive
an implicit commitment C = g

γ=Tcurrent−Tsigning−δ

1 hr′ , and then
uses a range proof to prove that it knows a value γ that is in
the range [1,232]. We use a range proof due to Camenisch,
Chaabouni, and shelat [20]. Alternatively, this proof could be
implemented using a Bulletproof, due to Bootle et al. [14].

In addition to this commitment proof and range proof, we
provide two separate Schnorr-style proofs in an “OR” con-
struction:

1. A standard Schnorr signature on the message. This com-
prises an interactive proof of knowledge of a value sk∈Zq
such that PK = gsk, flattened into a signature of knowledge
on the signed message, using the Fiat-Shamir heuristic.
(This represents the genuine signer’s signature on the mes-
sage.)

2. A proof of knowledge of a Boneh-Boyen signature on the
TimeForge time period Tcurrent, signed using the TimeForge
server secret key. For this construction we use a interac-
tive zero-knowledge protocol given by Boneh, Boyen and
Shacham [11, Protocol 1], flattened using the same Fiat-
Shamir hash function.

	Introduction
	Key Ideas
	Overview of Solutions

	Background on Email
	Email Authentication
	DKIM Replacement Constraints
	Resulting System Requirements

	Model and Security Definitions
	Defining Non-Attributability

	Forward-Forgeable Signatures
	FFS Construction from (Hierachical) IBS

	Our Protocol Proposals
	KeyForge
	TimeForge
	KeyForge+ and TimeForge+

	Implementation and Evaluation
	Evaluation

	Non-attributability definitions
	FFS security requirements in full
	FFS vs. FSS
	Further Discussion of TimeForge

