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ABSTRACT
The security of the Internet and numerous other applications rests
on a small number of open-source cryptographic libraries: A vul-
nerability in any one of them threatens to compromise a significant
percentage of web traffic. Despite this potential for security impact,
the characteristics and causes of vulnerabilities in cryptographic
software are not well understood. In this work, we conduct the
first systematic, longitudinal analysis of cryptographic libraries and
the vulnerabilities they produce. We collect data from the National
Vulnerability Database, individual project repositories and mailing
lists, and other relevant sources for all widely used cryptographic
libraries.

In our investigation of the causes of these vulnerabilities, we find
evidence of a correlation between the complexity of these libraries
and their (in)security, empirically demonstrating the potential risks
of bloated cryptographic codebases. Among our most interesting
findings is that 48.4% of vulnerabilities in libraries written in C
and C++ are either primarily caused or exacerbated by memory
safety issues, indicating that systems-level bugs are a major con-
tributor to security issues in these systems. Cryptographic design
and implementation issues make up 27.5% of vulnerabilities across
all libraries, with side-channel attacks providing a further 19.4%.
We find substantial variation among core library components in
both complexity levels and vulnerabilities produced: for instance,
over one-third of vulnerabilities are located in implementations of
the SSL/TLS protocols, providing actionable evidence for codebase
quality and security improvements in these libraries.
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1 INTRODUCTION
Cryptographic libraries are responsible for securing virtually all
network communication yet have produced notoriously severe vul-
nerabilities. In 2014, OpenSSL’s Heartbleed vulnerability [1] enabled
attackers to read the contents of servers’ private memory. More
recently, in June 2020 GnuTLS suffered a significant vulnerability
allowing a remote attacker to passively decrypt network traffic [5].
Given the critical role these libraries play, a single vulnerability
can have tremendous security impact—at the time of Heartbleed’s
disclosure, up to 66% of all websites were vulnerable [1].

A common aphorism in applied cryptography is that crypto-
graphic code is inherently difficult to secure due to its complexity;
that one should not “roll your own crypto.” In particular, the maxim
that complexity is the enemy of security is a common refrain within
the security community. Since the phrase was first popularized in
1999 [88], it has been invoked in general discussions about software
security [64] and cited repeatedly as part of the debate surrounding
the additional complexity requirements in government encryption
mandates [57]. Conventional wisdom holds that the greater the
number of features in a system, the greater the risk that these
features and their interactions with other components contain vul-
nerabilities.

Intuitively, there are a number of reasons that cryptographic
code should suffer from vulnerabilities not seen in other systems.
Timing attacks, newfound breaks in the cryptographic algorithms
and protocols used, use of insecure sources of randomness, and
other subtle issues appear to be relatively unique to software in this
domain [59, 71]. Worse, the need to handle such unique categories
of attacks may result in code that is more convoluted and difficult
to decipher, leading to further software complexity, fewer reviews
or analysis, and, ultimately, bugs.

Unfortunately, there is a lack of empirical evidence demonstrat-
ing the collective security impact of these cryptographic-style issues
in comparison to standard systems problems. Indeed, a nontrivial
portion of many common cryptographic libraries includes code
that is not purely cryptographic in nature, including often complex
network protocols, data serialisation (e.g., X.509 parsing), and sys-
tem configuration code. This analysis is increasingly important as
the industry moves toward newer and more novel cryptographic
primitives, programming languages, and use-cases such as cryp-
tocurrencies and zero-knowledge proofs. An oft-cited strategy to
improve security in cryptographic libraries and other systems is to
write code in memory-safe languages such as Rust, but we cannot
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evaluate the utility of such proposals without a systematic under-
standing of the causes of security issues in the first place [68, 70, 91].

In this paper, we conduct the first comprehensive, longitudi-
nal analysis of cryptographic libraries and vulnerabilities affecting
them. We examine 37 commonly used cryptographic libraries (see
Appendix A for the full list) and include in this study the 23 libraries
that have had any vulnerabilities reported in the National Vulner-
ability Database (NVD) [81] across the 18-year period from 2005
through 2022. In our analysis, we combine data from the NVD with
information collected from project repositories, internal mailing
lists, project bug trackers, and other external references. We exten-
sively characterize the vulnerabilities originating in cryptographic
software, categorizing them by root cause and feature location
within the codebase. We additionally measure exploitable lifetime
and severity to better understand their security impact.

Having surveyed the characteristics of the vulnerabilities them-
selves, we further investigate the causes of these vulnerabilities
within cryptographic software. We pay particular attention to the
relationship between software complexity and vulnerability fre-
quency, recording codebase size and cyclomatic complexity [77] of
each library. We also conduct an in-depth case study of OpenSSL
and its major post-Heartbleed forks, LibreSSL and BoringSSL, ex-
amining how the codebases diverged and quantifying the security
impact of the changes made.

Among our findings are that while 27.5% of vulnerabilities in
cryptographic software are issues directly related to the crypto-
graphic protocols or implementation, 40.0% of errors across all
libraries are related to memory management and a further 19.4%
are side-channel attacks, suggesting that developers should focus
their efforts on systems-level implementation issues. In-depth sub-
classification reveals that just 14 of 552, or 2.5%, of all vulnerabilities
are due to broken protocols or ciphers.

Notably, we find that some components of a cryptographic code-
base are disproportionately responsible for producing vulnerabil-
ities: of the vulnerabilities in our dataset for which we were able
to obtain location data, over 35% were located in implementations
of the SSL/TLS protocols, with a further 27.9% arising from certifi-
cate parsing implementations. The median exploitable lifetime of
a vulnerability in a cryptographic library is 3.88 years, providing
malicious actors a substantial window of exploitation.

Through an analysis of OpenSSL’s major version releases, we
find that OpenSSL has an average defect density of 1 CVE per thou-
sand lines of code. In our case study of OpenSSL forks, we provide
empirical evidence suggesting that debloating a cryptographic code-
base materially improves its security. Taken together, these findings
support long-held anecdotal beliefs in the security community that
cryptography is particularly tricky to implement in practice and
provide actionable steps forward for developers working on these
libraries and other cryptographic software.

Overall, our primary contributions are as follows:

• After thorough manual review and cleansing, we compile
and publish a dataset of all vulnerabilities in cryptographic
libraries to date.

• We perform an in-depth review of each issue, extensively
characterizing all vulnerabilities by type, feature location,
lifetime, severity, and other characteristics.

• We further investigate complexity within the library code-
bases as a potential source of vulnerabilities, finding substan-
tial variation in complexity among different cryptographic
components. Among OpenSSL and its forks, we quantify
rates of vulnerability introduction and the security impact
of excess code removal.

• We present two novel classification taxonomies specific to
cryptographic software and provide guidelines to improve
the NVD’s data quality.

The rest of the paper is organized as follows: We begin in §2
with a brief discussion of related work examining cryptographic
software, vulnerability life cycles, and the relationship between
complexity and security. In §3, we describe our process for selecting
systems and data sources in more detail and discuss mitigation
strategies for inconsistencies in vulnerability data reporting. We
then describe the properties of vulnerabilities in cryptographic
libraries, measure the complexity of these libraries, and discuss its
impact on security (§4). We conclude in §5 and §6 with a discussion
of takeaways for developers and users of cryptographic libraries
and implications for future development.

2 RELATEDWORK
Relationship Between Complexity and Security: There have
been several studies broadly investigating software complexity and
its effect on security in general-purpose, non-cryptographic soft-
ware. Ozment et al. [84] conducted an empirical study of security
trends in the OpenBSD operating system across approximately 8
years, focusing specifically on how vulnerability lifetimes and re-
porting rates have changed during that period. They found that
vulnerabilities live in the OpenBSD codebase for over two years
on average before being discovered and patched. Zimmermann et
al. [96] similarly analyzed vulnerability correlation with various
software metrics in the Windows Vista operating system, finding a
weak correlation. More recently, Azad et al. [62] studied the effects
of software debloating in web applications, observing how remov-
ing significant percentages of the codebase in PHP web applications
impacted vulnerabilities present. In contrast to prior work, we fo-
cus specifically on cryptographic software and the vulnerabilities
it produces.
Empirical VulnerabilityAnalysis:While there is a large existing
body of work studying vulnerability life cycles and patches, prior
work has not included cryptographic software in their datasets. Li et
al. [76] and Shahzad et al. [89] both conducted large-scale analyses
of vulnerability characteristics in non-cryptographic open-source
software, including various operating systems and web browsers.
Rescorla et al. [87] manually analyzed a dataset of 1,675 vulner-
abilities from the Linux kernel and other large software systems,
defining vulnerability lifetime through window of exposure, and
found inconclusive evidence that public vulnerability disclosure
is worth the security implications. The unique characteristics of
cryptographic software suggest that vulnerability data from non-
cryptographic systems may not be applicable, necessitating a sepa-
rate investigation of cryptographic software specifically.

Lazar et al. [75] studied the product sources of 269 cryptographic
vulnerabilities in the NVD, finding that only 17% of the vulnerabil-
ities they studied originated in the source code of cryptographic
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libraries with the majority coming from improper uses of the li-
braries. In contrast to Lazar et al., we draw an important distinction
between cryptographic software and cryptographic vulnerabili-
ties: cryptographic vulnerabilities must necessarily originate in the
source code or usage of cryptographic software,1 but cryptographic
software produces a broader class of vulnerabilities that are not
only cryptographic in nature (e.g., Heartbleed, a systems-level vul-
nerability caused by a missing bounds check, was excluded from
Lazar et al.’s study). In our work, we seek to fill this gap in prior
work and empirically quantify the practical security outcomes of
cryptographic implementations in substantially greater depth, in-
cluding studying of the complexity of the source code and how that
further impacts security.

Walden [94] conducted a case study of OpenSSL’s software devel-
opment practices in the aftermath of Heartbleed, analyzing changes
made to the codebase and observing that OpenSSL adopted addi-
tional recommended best practices, including reducing the size
of the codebase, in the wake of the breach. Walden did not study
vulnerabilities within OpenSSL and instead focused primarily on
general codebase metrics surveying project activity and changes to
the codebase. In this work, we conduct the first large-scale, com-
prehensive analysis of complexity and vulnerability trends across
multiple cryptographic libraries.

Role of Human Factors in Software Insecurity: A growing
body of work considers why even experienced developers struggle
to write secure software, particularly when relying on external
APIs [79, 83, 93], and investigates how organizations can better sup-
port developers and prevent mistakes [72, 85]. Other ethnographic
studies have focused specifically on the usability of cryptographic
libraries, finding that the software and documentation of these li-
braries are opaque and difficult for non-specialists to understand
[58, 73, 78, 86]. In particular, several studies have shown that devel-
opers overwhelmingly struggle to use these libraries correctly, with
overly complex implementation and poor documentation among
the root causes of this usability gap. In this work, we focus on
security within the API, a question orthogonal to security issues
deriving from the misuse of the API.

3 METHODOLOGY
To study the causes and characteristics of vulnerabilities in cryp-
tographic software, we collect source code repository and vulner-
ability data from 23 open-source cryptographic libraries. For the
purpose of this work, we define a cryptographic library as a general-
purpose collection of implementations of cryptographic primitives
and/or protocols. In particular, we exclude libraries that act only
as bridges to libraries in other languages (“wrappers”) and other
libraries that exist primarily to offer an interface for another library,
as well as libraries focused on comparatively niche primitives such
as multi-party computation and zk-SNARKs.

§3.1 describes our process for selecting libraries to include in
the study. We discuss the vulnerability characteristics studied and
our collection and data cleansing methodology for each in §3.2 -
§3.5. While we collected some of our repository and vulnerability

1The exception to this statement is when the vulnerability derives from an absence of
cryptography (i.e., data that should have been encrypted was not), but this is true as a
general rule.

Table 1: Cryptographic Libraries—The 23 cryptographic li-
braries studied, listed in order of total CVEs published in
each library from 2005 through 2022.

Cryptography
Library

Primary
Language CVE Count

1. OpenSSL C 203
2. GnuTLS C 62
3. Mozilla NSS C 54
4. WolfSSL C 54
5. Mbed TLS C 49
6. Botan C++ 26
7. Bouncy Castle Java 22
8. MatrixSSL C 21
9. Libgcrypt C 17
10. LibreSSL C 9
11. Crypto++ C++ 9
12. Nettle C 7
13. PyCrypto Python 5
14. Python-Cryptography Python 3
15. LibTomCrypt C 4
19. Golang Cryptography Go 3
16. Relic C 2
17. Sodium Oxide Rust 2
18. BoringSSL C 2
20. Rustls Rust 1
21. CryptLib C 1
22. Orion Rust 1
23. PyCryptodome Python 1

Total: 552

data through automated web scraping, due to inconsistencies and
inaccuracies in the NVD and other sources the majority of our
dataset was manually compiled and analyzed. §3.6 describes our
criteria for selecting complexity metrics, and §3.7 summarizes steps
take to mitigate the limitations of the work.

In the interest of open access, we have publicly released all data
used in this analysis.2

3.1 Systems Analyzed
We select cryptographic libraries for inclusion in our study on the
basis of the following requirements:

(1) Open-Source: A critical component of this work is measur-
ing software characteristics of codebases at particular points
in time, and so we consider only systems where we have
access to the source code.

(2) Sufficient CVE Reporting: Since we use the NVD as our
vulnerability source, all cryptographic libraries included in
the study must have at least one reported CVE. We necessar-
ily exclude a small number of cryptographic libraries, such as
libsodium and Ring, because they have no recorded entries
in the NVD (as shown in Table 7). Throughout the paper,
for certain sub-experiments (such as calculating lifetime) we

2https://github.com/jenny-blessing/cryptographic-libraries
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further select for systems that have sufficient quantity or
quality of reported data to allow us to make generalizable
conclusions.

As shown in Appendix A, 23 of the 37 cryptographic libraries
we examined satisfy both of these requirements. Table 1 contains
these 23 libraries included along with their respective CVE counts.3

While we list CVE counts of each individual library to illustrate
the composition of our dataset, we stress that absolute vulnerability
counts as reported in the NVD are not an effective measure of a
system’s security and that the listing in Table 1 should not be inter-
preted as a ranking of library security–indeed, a high CVE count
can be an indicator of transparency and robust security analysis. We
discuss selection bias in the NVD in greater detail in sections 3.7.1
and 4.4.

3.2 Vulnerability Data Sources
We use the NVD [81], managed by the National Institute of Stan-
dards and Technology (NIST), as a standardized source of vulnera-
bilities from which to construct our dataset. For the purposes of this
work, we define vulnerability as an entry in the Common Vulnera-
bilities and Exposures (CVE) list maintained by MITRE [66]. While
individual product bug trackers often provide more granularity,
they do not allow us to standardize or compare across systems as
the NVD does.

When a new CVE is created, the NVD assigns a severity score
(CVSS) [82] and performs additional analysis before adding the vul-
nerability to the database. We scrape CVE data from a combination
of the official NVD site and a third-party platform, CVE Details [20],
since CVE Details organizes CVEs by product and vendor, enabling
us to retrieve all CVEs for a specific system, but is missing certain
CVE information.

To supplement and refine the data provided by the NVD, we
manually review individual projects’ bug trackers, mailing lists,
blogs, and other external references (e.g., academic papers present-
ing the attacks) for more granular information on CVEs (e.g., patch
commit description, team discussion of a particular vulnerability,
etc.) and feature changes to a library over time. We were able to
obtain additional insights and relevant information in this way,
particularly from individual project issue trackers (for instance, we
collected security ratings as determined by the project rather than
the NVD, whether the CVE was patched, and internal analysis of
the problem), which we use to construct our dataset. This process
naturally varies by project based on the quality of its security advi-
sories and the information available to the public. We also recover
an additional (𝑛 = 6) CVEs erroneously listed only under parent
projects in the NVD but discussed in project security advisories
(e.g., a CVE in BoringSSL was listed under Chrome, and a small
number of Mozilla NSS CVEs were filed under Firefox).

In total, our dataset consists of 𝑛 = 552 CVEs in cryptographic
libraries published by the NVD between 2005 and 2022, inclusive.

3Note that because four CVEs in the dataset are filed under more than one library in
the NVD, the total CVE count of 552 is slightly less than the sum of the individual
library counts since we exclude duplicate entries.

3.3 Classifying Vulnerability Type
The NVD assigns each vulnerability a Common Weakness Enumer-
ation (CWE) [65] broadly classifying the vulnerability type. In an
initial review of CWE labels, however, we observe multiple issues
in the context of our study:

(1) Missing CWEs: 60 CVEs, or just over 10% of our dataset,
had no CWE label.

(2) Overly broad categorizations: We found that the CWE
labels assigned were often overly broad and vague regard-
ing the cause of the issue (e.g., “Improper Input Validation,”
which was the CWE label for 29 CVEs in our dataset and
which represented everything from a buffer overread to weak
parameter values for a particular cipher to a command in-
jection attack from lack of shell input sanitization in a con-
figuration script. Indeed, the 2006 Bleichenbacher signature
forgery attack was included under this category.

(3) Inconsistent labeling: Similar issues can be assigned se-
mantically different categories depending on the individual
who categorized them, particularly for comparatively am-
biguous issues comprised of a chain of errors (e.g., an integer
overflow causing a buffer overflow, which we observed cat-
egorized as a “Numeric Issue” in one CVE and a “Buffer
Overflow” in another). This is a particular concern for side-
channel attacks, where we count 14 different CWEs used to
describe this category of attacks within our dataset.

We describe issues encountered with the quality of the NVD and
suggested improvements in greater detail in §4.4.

3.3.1 Classification Taxonomy. We find sufficient inconsistencies
and discrepancies in the official NVD labeling that we develop a
new classification taxonomy customized to issues found in crypto-
graphic software and manually reclassify all CVEs. Our taxonomy
consists of six broad categories described in Table §8 in the Ap-
pendix. This manual labeling has several benefits, allowing us to
include CVEs that did not have labels in the NVD and, most impor-
tantly, to provide a far more precise categorization better suited to
cryptographic software, including sub-classifications within each
category.

We describe our specific methodology below:

(1) We begin by reviewing the official NVD description and
manually searching for an individual project security advi-
sory and/or bug discussion thread as available. The NVD’s
external references section is often useful here, though we
found it hampered by broken links (particularly for older
CVEs). In these cases and in cases where no patch commit
was included, we manually search for the CVE ID or other
relevant keywords in the source repository.

(2) For 𝑛 = 359 CVEs where we were able to obtain the patch
commit (roughly two-thirds of the dataset), we review the
changes in depth. If we did not have access to the patch com-
mit, we generally defaulted to the categorization equivalent
to the existing CWE label unless the NVD and/or project
description strongly suggested otherwise.

(3) Once we have collected and reviewed all relevant informa-
tion, we map the CVE into the existing taxonomy according
to its root cause (e.g., what went wrong in the design or
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implementation). There is some degree of ambiguity here:
vulnerabilities are sometimes composed of a chain of errors,
causing an inevitable degree of overlap among categories.
In these cases, we select the category that best describes
the initial problem that started the chain (e.g., an integer
overflow that led to a buffer overflow would be considered
a Numeric Issue). If there is a lack of adequate information
available or in particularly ambiguous cases, we again err
on the side of defaulting to the NVD classification.

(4) A second, independent labeler with domain knowledge re-
viewed 𝑛 = 71 cases of conflict where our taxonomy differed
semantically from the official NVD label, without being given
the first labeler’s decision or the original NVD label. In the
case of disagreement between the labelers, the labelers dis-
cussed until consensus was reached and revised the taxon-
omy accordingly as needed.

Memory Safety Flag: During our in-depth review we find a num-
ber of vulnerabilities whose root causemay not have been amemory-
related issue, but which were exacerbated or made exploitable by
the use of a memory-unsafe language—for instance, the example
mentioned above where an integer overflow led to a buffer over-
flow. To account for this nuance we add an additional binary flag
to every CVE in a C/C++ codebase indicating whether the problem
would have been mitigated and/or eliminated by memory safety.
The combination of the root cause classification and the memory
safety indicator allow us to better characterize these vulnerabilities.

3.3.2 Calculating Vulnerability Lifetime. We define a vulnerabil-
ity’s lifetime as its exploitable lifetime, i.e., the period of time from
when the source code in which the flaw exists is released to the
patch for the vulnerability is released. Calculating a lower bound
on this lifetime requires determining the release date of the first
version affected and the release date of the patch, consistent with
methodology used in prior work [84].

We scrape affected versions from the NVD as well as collecting
versions from project security advisories as available. We observe
that NVD descriptions in practice generally only include the patch
version, describing the affected versions as “version X and before.”
In these cases, if we cannot verify that this is a foundational vulnera-
bility from the project’s own security advisory, we mark the version
introduced as unknown and exclude it from lifetime calculations.
After thorough manual review, we identify four systems (OpenSSL,
GnuTLS, Mozilla NSS, and Botan) that consistently report both
the initial and patch versions in project security advisories or bug
trackers.

Mapping Versions to Release Dates: Once we know the initial
and patch versions for a CVE, we determine the release dates of
those versions in order to calculate lifetime. For each system we
study, we construct a dataset of versions and release dates by man-
ually reviewing individual system websites and developer mailing
lists for version release dates. While most systems clearly publish
the release dates of major versions, we found that minor version
release dates were trickier to track down, particularly for versions
released over a decade ago, and required substantial manual trawl-
ing of various mailing lists. In three cases, we were only able to
find the month and year of a vulnerability’s release date. In these

cases, we used the 15th of the month as an approximation of the
release date.

3.4 Calculating Vulnerability Severity
We use the NVD CVSS scores to study vulnerability severity across
systems. There are a few considerations here since the NVD revised
the CVSS classification in 2015 halfway through the timeframe of
our study, creating CVSS v3 (as opposed to the previous CVSS v2).
Since the NVD’s policy is not to retroactively score vulnerabilities
published prior to December 20, 2015 [21], the majority of vulner-
abilities in our dataset only have v2 scoring, while more recent
vulnerabilities only have v3 scoring. To maintain consistency, we
use v2 scoring where available in our calculations, and use v3 only
if no v2 score is provided.

3.5 Determining Vulnerability Location
To track the location of vulnerabilities within the codebase, we
collect the file path(s) within each patch commit. We were able
to recover patches for 𝑛 = 359 CVEs, and so we have location
information for two-thirds of the dataset. If we were unable to
obtain a patch commit or file path for a particular vulnerability, we
exclude it from location experiments. Since the file path collected is
from the library version at the time and several projects have been
refactored over the years in, we label each file path according to
the general location category, as shown in our dataset.

3.6 Complexity Metrics
There are a variety of mechanisms for approximating software
complexity. We select two particular complexity metrics through
which to study security outcomes across different systems: total
lines of code (LOC) and cyclomatic complexity. Prior work [90, 96]
has shown that these two metrics are among the best complexity
predictors of vulnerabilities in non-cryptographic software. We
define cyclomatic complexity as the number of linearly independent
paths through a system’s source code, following McCabe’s 1976
definition [77].

Lines of Code:We use the command-line tool cloc [67] to count
the total lines of code for each language in a codebase. Throughout
our study, we only count source code lines in the primary implemen-
tation language of a library (as referenced in Table 1) and exclude
blank lines, comment lines, and header files. We collect LOC mea-
surements of the cryptographic systems over time as well as for
specific version releases.

Cyclomatic Complexity:We use a separate command-line tool,
lizard [95], to calculate the cyclomatic complexity of each in-
dividual function. When comparing results across languages, we
use a modified version of the Lizard output to better standardize
result values. Specifically, we exclude one-line functions (such as
getters and setters in object-oriented languages) from our calcula-
tions. We also exclude test code and other components that would
not be included in the compiled binary. We additionally calculate
the average cyclomatic complexity number (CCN) for a given set
of files by taking the average over all the functions, rather than
calculating the CCN of each file and averaging the files together as
Lizard does.
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3.7 Limitations
Here, we summarize the limitations of our vulnerability and system
datasets and describe steps taken tomitigate these limitationswhere
possible.
3.7.1 NVD Vulnerability Reporting.
Reporting Bias: The NVD suffers from selection bias in that not all
systems report vulnerabilities when discovered. Some vendors pay
little attention to the NVD database and do not bother to register
vulnerabilities as CVEs, and others skew towards only reporting
high-severity CVEs [60].

To mitigate reporting inconsistencies across systems, we avoid
using CVE count as an absolute metric in our analysis since this is
likely a better indicator of a vendor’s reporting practices than of a
system’s security.

Quality Bias: Even when a system has an appropriate distribution of
CVEs reported, the CVE listings and/or project security advisories
often fail to include sufficient detail. For instance, as discussed in
§3.3.2, most systems do not accurately report versions affected by a
CVE. We mitigate this primarily through extensive manual review
to supplement and cleanse the dataset.

While manual review is essential to ensuring the consistency
and accuracy of the dataset, it can also introduce ambiguity around
the classification, an inherent limitation of manual analysis. We
control for this through having two independent reviewers review
any labeling in conflict with the NVD, and by providing a detailed,
public dataset for independent validation of our results.
3.7.2 Systems Studied.
Open-Source: All systems studied are open-source projects and it
is possible that the trends we observe will not be present in pro-
prietary, closed-source software. In order to accurately measure
complexity, though, we find it necessary to focus solely on open-
source systems, making this limitation unavoidable.

Lack of Language Diversity: Of the 23 cryptographic libraries stud-
ied, 15 were written in C or C++, with the remaining 8 written in
either Java, Python, Rust, or Go. The high percentage of crypto-
graphic libraries written in C/C++ reflects a historical tendency by
developers to default to C++ as the language of choice for high-
performance systems software, and this is an inherent limitation of
the population size, not the sample size.

Non-Technical Factors: The security of a system is impacted by many
economic and human factors in addition to codebase complexity
and other software metrics. Software development and testing prac-
tices, developer experience level, project funding, and other consid-
erations all affect the quantities and categories of vulnerabilities
introduced but are not reflected in codebase data.

4 RESULTS
Here, we present our empirical analysis of the causes and char-
acteristics of vulnerabilities in cryptographic software. We begin
by exploring several qualitative and quantitative properties of vul-
nerabilities discovered in cryptographic libraries. In the second
half of our analysis, we explore complexity within cryptographic
software, including how the complexity of different features varies.
and quantify complexity’s impact on security outcomes.

Figure 1: Vulnerability Types — Taxonomy of vulnerabili-
ties by root cause across six main categories within crypto-
graphic software. Table 8 contains descriptions of the tax-
onomy used and examples of vulnerabilities from each cat-
egory.

Table 2: Categorizations of Cryptographic Vulnerabilities—
Each subcategorization corresponds to a common vulnera-
bility type found among the 152 CVEs within the ‘Crypto-
graphic Issue’ category.

Cryptographic Subcategories CVE Count

Certificate Verification Logic Error 41 (26.8%)
TLS/SSL Logic Error 33 (21.7%)
Insufficient Parameter Validation 21 (13.8%)
Insufficient Randomness 13 (8.6%)
Incorrect Cipher Implementation 12 (8.0%)
Protocol Attack 7 (4.6%)
Support for Broken or Risky Algorithm 7 (4.7%)
Miscellaneous 18 (11.8%)

4.1 Characteristics of Vulnerabilities in
Cryptographic Software

In this section, we characterize the 552 vulnerabilities affecting the
cryptographic libraries studied. We first categorize vulnerabilities
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Table 3: Distribution of CVEs among the various compo-
nents of crypto software — Of the 359 CVEs in our dataset
for which we were able to find a patch commit in the li-
brary’s main language (and therefore identify the location),
over one-third originated in SSL/TLS implementations.

Source Code Component CVE Count

SSL/TLS 129 (35.9%)
X.509 (including ASN.1) 100 (27.9%)
Encryption/Signature Algorithms 65 (18.1%)
Large Integer Implementations 18 (5.0%)
Other Primitives 11 (3.1%)
Other Protocols 8 (2.2%)
Miscellaneous (RNG, UTF encoding, etc.) 28 (7.8%)

by type, including broadly classifying them as cryptographic or non-
cryptographic in nature, and investigate origin within the source
code. We further study the severity and exploitable lifetime of these
vulnerabilities.

4.1.1 Vulnerability Type. Figure 1 shows the respective CVE counts
for each of the six main vulnerability types (see §8 for detailed de-
scriptions of each). As discussed in §4.1.1, because of the lack of
consistency and specificity in NVD type labeling, we manually
recategorize the CVEs in our dataset based on review of CVE de-
scriptions and patch commits according to the taxonomy shown.

General memory management issues comprise the largest indi-
vidual category at 221 out of 552, or 40.0%, of CVEs. This includes
202 memory safety issues (out-of-bounds write, out-of-bounds read,
incorrect calculation of buffer size, etc.) as well as 19 other memory-
related issues such as infinite recursion and memory exhaustion.

Cryptographic issues comprise the second-largest individual
category at 27.5%. We further subdivide this category §4.1.2 and
so will not dwell on it here. Various side-channel attacks, such as
timing or memory-cache attacks, further produce 19.4% of CVEs
in cryptographic libraries. For the purpose of Figure 1 we list side-
channel attacks separately from the general “cryptographic issues”
category since they exploit weaknesses in the physical hardware of
a system or timing and cache-access data rather than direct flaws in
the cryptographic implementations, but side-channel vulnerabilities
can also broadly be considered to be cryptographic in nature. We
will revisit this distinction in 4.1.2 when we present a more granular
categorization of cryptographic vulnerabilities.

A further 7.8% of vulnerabilities arise from numeric errors (i.e.,
errors in numerical calculation or conversion not specific to any one
cipher or algorithm, such as carry propagating errors or squaring
very large numbers), and various systems issues comprise 2.9%.

Memory Safety Issues in C/C++ Code. Figure 1 displays root
cause vulnerability data across all libraries of all languages, but
there is an additional question of interest here: within libraries
written in C/C++, how many vulnerabilities are either caused or ex-
acerbated by use of a memory-unsafe language? Using the memory
safety flag described in §3.3.1, we find that 248 out of 512 C/C++
CVEs, or 48.4% of the CVEs in C/C++ libraries, would have been
either prevented or mitigated by using a different language.

Table 4: Exploitable Lifetimes—Exploitable lifetimes (in
years) of vulnerabilities in the four cryptographic libraries
with version reporting data (see Table 7).

System # CVEs Median
Lifetime

Avg.
Lifetime

StdDev
Lifetime

OpenSSL 189 3.78 4.1 3.06

GnuTLS 16 1.70 1.91 1.46

Mozilla NSS 30 11.25 8.42 5.55

Botan 23 4.12 6.25 5.97

4.1.2 Cryptographic Vulnerabilities.

Our findings show that just 27.5% of CVEs in cryptographic
software are directly related to the cryptographic design and im-
plementation. To verify that this trend is consistent across libraries
(and not due to skewed data from any one particular library), we cal-
culate the ratio of cryptographic to non-cryptographic CVEs in the
five cryptographic libraries with the largest quantities from Table 1,
finding that the individual library percentages are consistent within
the range of 25-35%. Since a further 19.5% are side-channel vulner-
abilities, the total percentage of vulnerabilities broadly related to
the cryptographic nature of the source code is 47%, or almost half.

Table 2 shows the particular subtypes of cryptographic design
and implementation issues in greater detail. Most notably, we find
that just 9.2% of cryptographic CVEs (“Protocol Attack” and “Sup-
port for Broken or Risky Algorithm”) are due to a flaw in a theo-
retical algorithm or protocol specification. The clear majority are
caused by various errors in individual library implementation, par-
ticularly in the TLS state machine logic and certificate verification.
Certificate verification source code (including X.509 ASN.1 pars-
ing) is particularly tricky to get right, with implementation logic
errors producing over a quarter of all cryptographic issues. The
miscellaneous category further includes a small number of CVEs for
which there was insufficient information to make a more detailed
assessment.

4.1.3 Vulnerability Source. Which components of a cryptographic
library produce high numbers of vulnerabilities? This is a related,
but distinct, question from the discussion in §4.1.2 around catego-
rizing cryptographic issues. Here, we are interested in what areas
of the codebase frequently produce all types of vulnerabilities. We
select the 367 CVEs (out of our dataset of 552) for which we can
find a patch commit, and thereby identify the location of a CVE
within a codebase.

Figure 3 shows the distribution of CVEs among library compo-
nents. TLS/SSL protocol implementations produce over 1/3 of CVEs,
while encryption and digital signature algorithms produce 18.1% of
CVEs and various primitives produce just 3.1% of CVEs. Certificate
parsing is also noteworthy, with X.509 and ASN.1 implementations
collectively producing around 27.9% of CVEs.

4.1.4 Vulnerability Lifetime. Table 4 displays the median and av-
erage exploitable lifetimes for four systems along with the sample
standard deviation. As previously discussed in §3.3.2, we are only
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Figure 2: Overall Complexity Over Time—Average CCN of
all 23 cryptographic libraries from 2010 through 2022. Li-
braries written primarily in C/C++ are indicated with a solid
line, while all other languages (Java, Python, Rust, and Go)
are shown with a dashed line. Several codebases were either
not under active development or were otherwise unavail-
able for part of our range of study, and are therefore only
shown for a subset of the time period.

able to obtain accurate version reporting data for four of the crypto-
graphic libraries studied (𝑛 = 258 CVEs in total), and so we calculate
lifetimes for these systems only.

We find that overall, the median lifetime of a vulnerability in
cryptographic software is 3.85 years with a standard deviation
of 4.04 years, providing malicious actors a substantial window of
exploitation. In fact, because clients frequently continue using out-
dated versions without updating (even in the wake of a major
security breach [69]), these calculations represent a lower bound
on the actual exploitable lifetime. Moreover, we necessarily include
only vulnerabilities that have been discovered and reported, so
vulnerabilities lying undiscovered in the codebases may further
increase the average window of exploitation.

4.1.5 Vulnerability Severity. The average severity score of CVEs in
our dataset was 5.37, with a standard deviation of 1.80. Qualitatively,
we observed very little variation among libraries in vulnerability

Figure 3: Individual Feature Complexity—Variations in com-
plexity of nine feature common to cryptographic software
among libraries implementing these features, with darker
colors corresponding to a higher complexity. Measurements
were taken from each codebase in mid-2023.

severity, suggesting that cryptographic libraries are reporting a
representative range of vulnerabilities, not merely the most severe.

4.2 Code Complexity and Security
Excessive complexity is often cited within the security community
as the reason for adverse security outcomes. In this section, we
explore this association by studying sources of complexity within
cryptographic libraries and how this complexity impacts security.

First, we study the cyclomatic complexity of libraries over time,
observing that a project’s primary language is strongly correlated
with code complexity. We further examine how this complexity
breaks down among different features within the library. Second,
we study the rate of CVE introduction per LOC in OpenSSL to
approximate a lower bound for CVE frequency. Finally, we use the
LibreSSL and BoringSSL forks of OpenSSL as a natural experiment
to study how the changes made in the forks impacted the security
of the projects.

4.2.1 Overall Library Complexity. Figure 3 shows the cyclomatic
complexities of all cryptographic libraries studied over the 12-year
period from 2010 through 2022. We observe significant variation in
structural code complexity across systems, with the average CCN of
the most complex library (MatrixSSL, with an average CCN of 9.0)
almost five times as large as the average CCN of the least complex
(Sodium Oxide, with an average of 1.74).

The divergence of the results based on language is particularly
noteworthy: there is a clear trend of cryptographic libraries written
in C or C++ having substantially greater structural complexity
compared to codebases written in Java, Python or Rust. In fact, of
the 14 libraries studied that were written primarily in C or C++,
just two (Botan and Nettle) consistently maintained a complexity
level on par with that of non-C libraries.
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Table 5: Rate of Vulnerability Introduction—CVEs introduced per thousand lines of C/C++ source code (KLOC) across four
distinct versions of OpenSSL.

Major Version Release Date Average
CCN

Most Recent
Minor Version LOC Change CVEs

Introduced
CVEs /
KLOC

1.0.2 1/22/2015 6.3 1.0.1l 22,236 25 1.12
1.0.1 3/14/2012 6.1 1.0.0h 18,766 33 1.76
1.0.0 3/29/2010 6.1 0.9.8n 15,510 12 .77
0.9.8 7/5/2005 6.1 0.9.7g 23,174 28 1.2

4.2.2 Individual Feature Complexity. The high levels of complexity
observed in §4.2.1 raise a natural follow-up question: what are the
sources of this complexity within these libraries? We select eight
features common to a quorum of libraries that collectively cover the
typical components of a cryptographic library (e.g., key exchange,
certificate parsing, authenticated encryption, digital signatures,
etc.). For the purpose of approximating feature complexity, we
do not differentiate between different versions of a standard or
primitive and opt to include all versions in our measurements. For
instance, some implement both SHA-256 and SHA-512 and others
implement only one of the two, while still others include older
versions such as SHA-1. Similarly, we collectively measure and
include all versions of SSL and TLS that a library provides under the
‘TLS’ heading. We include ASN.1 parsing and certificate revocation
logic under X.509, since some projects store these components
within the same file, making them challenging to separate.

Figure 3 shows a heatmap visualization of feature complexity
across libraries that implemented at least one version of all the
features selected. Among feature set, PKCS stands out as having
a consistently high relative complexity. Other PKI components,
including ASN.1 and X.509 parsing, also exhibit higher than usual
complexities. Conversely, the SHA algorithm family is notable for
having a very low structural complexity relative to other compo-
nents.

4.2.3 Relationship Between LOC and Vulnerability Count. Having
studied structural complexity within cryptographic software and its
sources, we now ask what security outcomes complexity produces.
Here, we examine whether there is a correlation between the lines
of code introduced in a version and the number of CVEs introduced.
To control for variations in vulnerability reporting practices, rather
than considering across different systems we instead contrast CVEs
introduced across different versions of the same system, OpenSSL.
We consider only OpenSSL here because it is the only cryptographic
library with sufficient quantity and quality of CVE entries to allow
us to do such a comparison. It is also to date still the single most
widely used cryptographic library [13].

We select four OpenSSL versions (0.9.8, 1.0.0, 1.0.1, and 1.0.2)
whose release dates roughly span the 10-year period from 2005
to 2015. OpenSSL 0.9.8 was released in July 2005, and 1.0.2 was
released in January 2015. Versions released within this timespan
are old enough that vulnerabilities have had time to be discovered
but recent enough that the results are still relevant for contempo-
rary software development. Since OpenSSL releases major versions
every two to three years on average, we are necessarily limited in
the number of versions we can include in our study.

For each of the four releases, we approximate the net lines of
code added in the version by measuring the overall size of the major
version in question and the most recent prior version (in all four
cases, a minor version) and taking the difference. The source code
for all versions was obtained from the releases stored in OpenSSL’s
source code repository [42]. A lack of data on the precise commits
that were included in a version release makes it necessary to mea-
sure LOC added in a version in this indirect manner, but the LOC
difference between a release and the one immediately preceding it
gives a very near approximation of the size of the version. It should
be noted that this calculation yields the net change of lines added
and removed, rather than solely lines added, which represents a
better approximation of the impact of the version on the codebase.

Column 5 in Table 5 gives the LOC change for each version, for an
average of 19,921.5 lines of C added per version.We further calculate
the number of CVEs introduced in each version using vulnerability
data tracked by the OpenSSL project [43]. We estimate the number
of CVEs introduced per thousand lines of code by taking the ratio
of columns 5 and 6 in Table 5.

Column 7 shows that, on average, around 1 CVE is introduced in
OpenSSL for every thousand lines of code added. This ratio should
be interpreted as a lower bound since this necessarily includes only
vulnerabilities that have been discovered. The ratio of vulnerabili-
ties existing in the codebase per thousand LOC is very likely higher
when taking into account vulnerabilities that have not yet been
discovered, though it is impossible to know just how much higher.
Furthermore, we made a methodological decision to calculate these
sizes based on the net LOC difference (which takes into account
LOC removed) instead of solely considering LOC added, since this
gives a more complete accounting of changes made in the version.

4.3 Case Study: OpenSSL, LibreSSL, &
BoringSSL

The OpenSSL project and its forks provide a natural experiment
allowing us to study the security impact of major changes to a
codebase in the wild. The Heartbleed vulnerability [1] gained in-
ternational attention in April 2014, bringing OpenSSL into the
spotlight with it. The increased scrutiny of the OpenSSL codebase
in the wake of Heartbleed prompted the creation of two major forks
of the codebase: LibreSSL, developed by the OpenBSD project and
released on July 11, 2014 [30], and BoringSSL, developed by Google
and released on June 20, 2014 [74].

Although LibreSSL and BoringSSL are both forks of OpenSSL,
they were intended for very different purposes: LibreSSL was con-
ceived of as a replacement for OpenSSL that maintained prior API
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Figure 4: Codebase Growth in OpenSSL, LibreSSL, and Bor-
ingSSL. Relative sizes of OpenSSL, LibreSSL, and BoringSSL
measured every six months from July 2014 through Janu-
ary 2022. LOC count includes only C and C++ source code
(excluding blank lines, comment lines, test code, and header
files).

compatibility and portability [26], while BoringSSL was developed
for internal use only. OpenBSD forked OpenSSL with the goal of
creating a more modern and secure TLS library after a particular dis-
agreement over the way OpenSSL handled memory management
[26, 31]. The BoringSSL project, on the other hand, specifically
states that the library is not recommended for external projects’
use [7]. This difference in stated purpose helps to explain why Bor-
ingSSL diverges more from OpenSSL than LibreSSL in overall size
(as shown in Figure 4) and features offered.

4.3.1 Code Removal. Post-fork, LibreSSL and BoringSSL both re-
moved significant amounts of the OpenSSL codebase. On April 7,
2014, the day that Heartbleedwas patched and announced, OpenSSL
contained 202,227 lines of C and C++ source code in its core library.
In the months that followed from early April through June 2014,
LibreSSL removed roughly 60,000 C/C++ LOC while BoringSSL
removed 100,000 LOC.

Figure 4 shows a comparison of the codebase sizes over time,
beginning in July 2014 once all three libraries had been released.
The comparatively large size of OpenSSL relative to the two forks is
primarily due to OpenSSL’s maintenance of legacy ciphers and pro-
tocols in order to maintain backwards compatibility and portability.
We summarize the major changes made by LibreSSL and BoringSSL
in the immediate aftermath of Heartbleed below, focusing on fea-
tures removed between April and July of 2014.

LibreSSL Changes. The OpenBSD team built LibreSSL under the
design that the library would only be used on a POSIX-compliant OS
with a standard C compiler [31, 92]. This assumption enabled them
to remove much of OpenSSL’s OS- and compiler-specific source
code. The LibreSSL team further removed a handful of unnecessary
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Figure 5: Vulnerability Comparison Post-Heartbleed—
Vulnerabilities discovered in OpenSSL after the initial
releases of LibreSSL and BoringSSL with a comparison of
how many of those vulnerabilities also affected LibreSSL
and BoringSSL.

Table 6: Percentages of source code and corresponding CVEs
removed in LibreSSL and BoringSSL compared to OpenSSL.

Library % of Codebase
Removed

% of Vulnerabilities
Removed

LibreSSL 30% 25% (15/59)
BoringSSL 50% 40.6% (24/59)

or deprecated ciphers and protocols, many of which dated back to
the 1990s, including SSLv2 and Kerberos.

BoringSSL Changes. BoringSSL has more limited intended use
cases than LibreSSL and so was able to discard roughly twice as
much source code as LibreSSL. Since they removed anything not
needed for Chromium or Android, BoringSSL discarded a variety of
outdated ciphers, protocols, and other algorithms, including Blow-
fish, Camellia, RC5, MD2, and Kerberos [74]. We also observed that
BoringSSL refactored what source code remained more extensively
than LibreSSL.

4.3.2 Determining Vulnerabilities Removed. The abrupt jettisoning
of approximately 30% and 50% of OpenSSL’s codebase by LibreSSL
and BoringSSL, respectively, raises the question of what impact this
had on the security of the two new codebases. Specifically, of the
59 vulnerabilities introduced but not yet discovered in the OpenSSL
codebase as of the April 2014 fork, how many still affected LibreSSL
and BoringSSL after the steps they took to shrink the codebase? To
answer this question, we study vulnerabilities reported in OpenSSL
in the wake of Heartbleed and whether they also affected LibreSSL
and BoringSSL.

Since we find the official NVD count wholly inaccurate for track-
ing whether LibreSSL and BoringSSL were affected by CVEs (Li-
breSSL in fact has a policy of not requesting CVEs[4], as described
further in §4.4), we create our own database based on OpenSSL’s
vulnerability list [43]. For each CVE affecting OpenSSL post-fork,
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we manually classify it as having also affected LibreSSL or Bor-
ingSSL as of July 11, 2014. To do so, we conducted an extensive
manual review of commit descriptions in the source code of both
libraries [9, 28], the LibreSSL team mailing list archives [29], the
LibreSSL change log [27], LibreSSL security advisories [3], and the
BoringSSL bug tracker [8].

We consider only vulnerabilities introduced prior to the forks
(e.g., introduced inOpenSSL version 1.0.1g or earlier) and discovered
after July 11, 2014 (e.g., patched in OpenSSL version 1.0.1i or later).
We select a July 11 cut-off date since that is the official release date
of LibreSSL. BoringSSL was first released in late June, and so by
July 11 both libraries had been released. Vulnerabilities discovered
and patched between April 7 and July 11 are not included in our
dataset to allow the LibreSSL and BoringSSL projects time to make
initial modifications to the source code and officially release their
versions of the library.

In our review of individual project resources, if the team indi-
cated they were not affected by a particular CVE then we use the
OpenSSL patch commit location to identify the relevant source code
in Libre and Boring and determine why they were unaffected. If the
offending OpenSSL source code was not present in the library as of
July 11, then we consider the library to have been unaffected by the
CVE in the context of our study. Approximately 1/3 of OpenSSL
CVEs were not mentioned in any of the aforementioned LibreSSL or
BoringSSL sources, in which case we again revert to independently
reviewing the source code covered by the OpenSSL patch and use
git diffs to compare files across libraries.

4.3.3 Impact of Code Removal. Our dataset consists of 59 CVEs
introduced in OpenSSL prior to the Heartbleed fork on April 7
and discovered after the releases of both LibreSSL and BoringSSL.
Table 6 shows that of those 59 CVEs, 44 still affected LibreSSL and
35 affected BoringSSL. The clear correspondence between the per-
centage of the OpenSSL codebase removed and the percentage of
OpenSSL vulnerabilities removed demonstrates the security impli-
cations for reducing codebase size. Figure 5 further breaks down the
total based on the year OpenSSL published the CVE. Only the years
2014 through 2016 are included in the figure because no additional
CVEs were discovered in 2017 or later that were introduced prior
to April 2014 (and therefore qualified for inclusion in our study).

Because these forks inadvertently created a natural experiment
in reducing software complexity, we show directly that these vul-
nerabilities were removed from the respective codebases because
the original source code was removed, a stronger conclusion than
merely demonstrating a correlation between size and security. Fur-
thermore, we empirically quantify the security gains of LibreSSL
and BoringSSL as shown in Table 6, and observe that vulnerabilities
removed is closely correlated with source code removed across
LibreSSL and BoringSSL.

4.4 CVE Reporting Practices
Since our analysis relies heavily on the quality of the vulnerabil-
ity reporting in the NVD and we spent substantial time manually
reviewing the database, we briefly discuss observed reporting prac-
tices in cryptographic systems.

How reliable is theCVE data on cryptographic libraries?CVE
Counts: From Table 1 we observe that OpenSSL has a far greater

number of CVEs than any other cryptographic library, with 203
CVEs published during our timeframe compared to the second-
highest count of 62 CVEs in GnuTLS. An important question, then,
is whether this difference is due to variations across libraries in
security, attention, internal reporting policies, or some linear com-
bination of the three.

In our manual review of the NVD, we qualitatively that the
OpenSSL project is often used as catch-all repository of vulnerabil-
ities relevant to cryptographic source code. CVEs for well-known
protocol attacks, such as Logjam, would often only be filed under
two or three of the most widely-used libraries, and sometimes only
under OpenSSL. For instance, of the 23 libraries studied, the 2015
“FREAK” protocol exploit was only filed under OpenSSL [2].

Our case study of the evolutions of OpenSSL forks provides a
natural test to study how the official NVD vulnerability counts
compare. Whereas OpenSSL’s absolute vulnerability count was 190
CVEs, LibreSSL and BoringSSL recorded just nine and one CVE(s),
respectively, across the same time period. Since we conducted ex-
tensive manual examination of project commits, team mailing lists,
and security advisories as part of our case study of the forks (de-
scribed in greater detail in §4.3), we confirm that the NVD count
of vulnerabilities affecting LibreSSL and BoringSSL is substantially
lower than the actual number of vulnerabilities that affected those li-
braries. This appears due in no small part to formal policies of these
libraries not to request CVEs[4]. Overall, this finding reinforces
the unreliability of absolute vulnerability counts as an indicator of
project security.

CVE Types: As previously mentioned in §4.1.1, while we initially
relied on CWE data to classify the remaining vulnerabilities, upon
closer inspection we found that CWE labeling was sufficiently in-
consistent that we needed to manually review descriptions and
commits in order to gain a more accurate picture of what vulnera-
bility classes exist.

Moreover, CWE labels do not map well to the types of issues
that arise in cryptographic software. For example, while the NVD
provides a label for timing side-channel attacks (“CWE-385: Covert
Timing Channel”), this CWE is used for only 5 CVEs, with develop-
ers often opting to select a more generic label for timing attacks
instead. Moreover, the NVD provides no CWE label for side-channel
attacks that exploit other environmental factors. Side-channel at-
tacks are an important attack class unique to cryptographic soft-
ware, but the lack of standard labeling conventions has result in
these vulnerabilities being reported under a variety of generic CWE
labels. In fact, we observed 14 unique CWE labels used to categorize
side-channel attacks in our dataset.

5 DISCUSSION
We set out to better understand the root causes of insecurity in cryp-
tographic software, including the relationship between software
complexity and security and other underlying causes of vulnera-
bilities in these libraries. Here, we highlight the most noteworthy
results and their implications for software development practices.

Need for a systems approach to cryptographic software: Our
findings lay bare the discrepancy between the critical role crypto-
graphic libraries hold in securing network traffic and the security
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posture of these libraries. In Figure 3 we demonstrated the unusu-
ally high levels of structural complexity in many of today’s crypto-
graphic libraries. This kind of complexity makes these codebases
more difficult to test and maintain, which in turn has significant
implications for library security. In our analysis, we even find at
least 11 instances where the patch for a vulnerability inadvertently
introduced a new vulnerability (and this count only includes CVEs
where this was noted in a project security advisory or discussion
thread).

One of the more interesting trends from Figure 4 is that all three
of OpenSSL, LibreSSL, and BoringSSL have been gradually increas-
ing in size since the 2014 fork. Even projects that set out to be
minimalist and security-focused, as both LibreSSL and BoringSSL
did, naturally accumulate additional source code and features over
time. While some projects may need to maintain such complex-
ity for backwards compatibility reasons, our findings suggest that
where possible developers need to take special care to guard against
such bloat through, for instance, conducting an annual audit of the
codebase to remove support for outdated or deprecated ciphers as
newer ones are added.

A significant, actionable contribution of this work is to provide
benchmarking and comparison data for developers of cryptographic
software. While a certain base amount of complexity is unavoidable
in cryptographic implementations, we can only begin to understand
where that baseline may be through large-scale data collection and
comparison across the cryptographic software ecosystem.

Side-channel attacks as a threat vector: Side-channel attacks
have often been overlooked by library developers, in part because
they frequently require physical hardware access. CryptLib, for in-
stance, disputed a memory-cache side-channel CVE because it “does
not include side-channel attacks within its threat model” [80]. Our
finding that approximately 20% of vulnerabilities in cryptographic
software are side-channel attacks provides empirical backing for
developers to devote a level of attention to these types of attacks
proportionate to the number of security threats produced.

Causes of vulnerabilities within libraries: Not all feature com-
ponents produce vulnerabilities at the same rate, as demonstrated
by the fact that over 1/3 of vulnerabilities are produced by SSL/TLS
source code. The findings in this study provide empirical data for
developers to focus their debugging, testing, and fuzzing efforts
accordingly. Furthermore, while public discussion of these libraries
has often focused on widely-publicized breaks of the TLS/SSL pro-
tocols, such attacks make up just 1.3% of vulnerabilities in these
libraries. In practice, a library is far more likely to be made insecure
by a missing bounds check than by use of a weak protocol.

Shift to memory-safe languages: The majority of cryptographic
libraries (and particularly themost widely used libraries) are written
in C and/or C++, which have historically been the languages of
choice for high-performance software in large part because they
allow developers direct control over memory allocation. Our results,
however, empirically show that just over half of vulnerabilities are
in C/C++ libraries are either caused or made more dangerous by the
language’s memory allowances, many of which are quite primitive.
For example, an off-by-one error when calculating a value later
used to determine how much memory to allocate is at its core a

simple “numeric error,” but such mistakes can have a disastrous
impact in a non-memory-safe language.

The abundance of memory safety issues present in cryptographic
libraries raises valid questions of whether we should continue to
rely on non-memory-safe languages to write security-critical sys-
tems. Prioritizing memory safety in the software development pro-
cess is a core component of the U.S. National Cybersecurity Strat-
egy [55] and the Cybersecurity and Infrastructure Security Agency
(CISA)’s ongoing initiative to build systems that are “secure by
design” [56]. Several new cryptographic libraries have been cre-
ated in the past few years, mostly in Rust, a popular memory-safe
language, and marketed as alternatives to older C libraries such as
OpenSSL and GnuTLS. These libraries are still quite new compared
to the older C stalwarts, however, and a substantial amount of au-
diting and performance testing is still needed before they could be
considered for adoption by a major OS or web browser, for instance.

It is important to note that “memory-safe” languages are not a
panacea for memory-related vulnerabilities, and, contrary to what
their name would imply, produce memory leaks and other issues
of their own. Moreover, there are still numerous classes of systems
vulnerabilities that cryptographic implementations need to contend
with, such as downgrade attacks and various side-channel issues,
and that will not be solved merely by using a different language. A
major contribution of this work is to quantify the prevalence of side-
channel attacks in cryptographic software, a class of attacks Rust
will not prevent. Nonetheless, several of the newer cryptographic li-
braries written in memory-safe languages are promising and should
be taken seriously as alternatives to their C counterparts.

Complexity variation across languages: In addition to the po-
tential of memory-safe languages to reduce raw quantities of mem-
ory safety bugs, one of our most interesting results is that libraries
in our study written in memory-safe languages have a significantly
lower cyclomatic complexity than the clear majority of those writ-
ten in C/C++ (as shown in 3), suggesting that the language itself
may be a source of complexity. That a small number of C libraries
were able to achieve a very low complexity shows this trend is at
least partially due to weak software development practices across
some of the C systems, though it is also possible that the need for
various memory-related conditionals makes C source code inher-
ently more complex than Python and Rust.

6 CONCLUSION
In this paper, we analyzed the real-world security issues found in
modern cryptographic software and its root causes, including (1)
characteristics of vulnerabilities in cryptographic software and (2)
correlations between various complexity metrics and correspond-
ing vulnerability counts. Overall, our findings support the common
intuition that it is dangerous to maintain excess amounts of legacy
source code, particular C or C++ code, within cryptographic soft-
ware, and provide empirical evidence advocating for a greater focus
on debloating these libraries. Our results further suggest that the
rise of memory-safe languages such as Rust and Go will materially
improve security, and developers should consider adopting these
languages where possible.
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A APPENDIX

Table 7: Cryptographic Libraries. We present a comprehensive listing of commonly used cryptographic libraries and certain
repository characteristics. A means a library satisfies the property, a means it partially satisfies the property, a means it
does not, and ‘-’ indicates that it is not applicable or unable to be determined. For each library, we approximate years in active
development beginning from the initial public release through the most recent repository update, a process that is ultimately
best-effort. We consider a library to be currently active if the project repository and/or website have been updated within the
last 12 months.

Library
Primary Implementation

Language(s) Years Active
Open
Source

CVE(s) Published
Between 2005 - 2022

Reports CVE
Affected Versions

BearSSL [6] C 2016 - 2018 -

BoringSSL [7] C, C++ 2014 - Present

Botan [10] C++ 2000 - Present

Bouncy Castle [11] Java, C# 2000 - Present

BSAFE [12] C, Java, Assembly 1996 - Present

CIRCL [14] Go 2019 - Present -

Cryptix [15] Java 1995 - 2005 -

Cryptlib [16] C 1995 - Present

Crypto++ [17]
(also known as libcrypto++) C++ 1995 - Present

Crypto-JS [18] JavaScript 2013 - Present -

GnuTLS [22] C 2000 - Present

Golang Cryptography [23] [22] Go 2012 - Present -

Java Cryptography
Architecture (JCA) [24] Java 1997 - Present -

Libgcrypt [25] C 1998 - Present

LibreSSL [26] C 2014 - Present

Libsodium [32] C 2013 - Present -

LibTomCrypt [33] C 2001 - Present

MatrixSSL [34]
(now the Rambus TLS Toolkit) [47] C 2004 - 2020 4

Mbed TLS [35]
(previously PolarSSL) C 2009 - Present

Monocypher [37] Rust 2017 - Present -

Mozilla Network Security
Services (NSS) [38] C, C++ 2000 - Present

NaCl [39, 63] C 2008 - 2016 -

Nettle [40] C 2001 - Present

Orion [44] Rust 2018 - Present

OpenSSL [41] C 1998 - Present

PyCrypto [45] Python, C 2002 - 2014

PyCryptodome [46] Python, C 2014 - Present

Python-Cryptography [19] Python 2014 - Present

Relic [61] C 2010 - Present

4MatrixSSL was acquired by a private company in 2020 and has since become closed source, but since the codebase was open source for many years we include it in our dataset.
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Library
Primary Implementation

Language(s) Years Active
Open
Source

CVE(s) Published
Between 2005 - 2022

Reports CVE
Affected Versions

Ring [48] Rust, Assembly 2016 - Present -

RustCrypto [49] Rust 2017 - Present -

Rustls [50] Rust 2016 - Present

s2n [51] C 2015 - Present -

Schannel [36] - 2000 - Present

Sodium Oxide [52] Rust 2018 - 2021

Stanford JavaScript
Crypto Library (SJCL) [53] JavaScript 2009 - 2019 -

WolfSSL [54]
(previously CyaSSL) C 2006 - Present

Table 8: Type Taxonomy—Taxonomy used to classify vulnerabilities by root cause. In cases of ambiguity, we select the category
that best describes the initial cause of the issue (see §3.3).

Category Description Examples

Cryptographic Issue Vulnerabilities arising from a direct flaw in the design
or implementation of cryptographic primitives, proto-
cols, and algorithms (i.e., the cryptographic nature of the
source code).

Implementation does not follow the recommended RFC practice,
using a weak or broken protocol, protocol downgrade attacks, use of
unsafe primes to generate cipher parameters, allowing incorrect pa-
rameter input for a cipher based on cipher spec (e.g., one parameter
should always be larger than the other).

Memory Management Vulnerabilities caused by memory management—namely,
allocating, reading and writing, and freeing data. This
category also includes issues that can affect non-memory-
safe languages, such as infinite loops and other memory
exhaustion issues.

Source code does not check whether an input is null prior to access,
missing bounds check while reading a buffer (such as a field from
an X.509 certificate).

Side-Channel Attack An attack that exploits variations in time taken to com-
plete an operation or physical hardware, including timing
and memory-cache attacks.

Non-constant scalar multiplication, padding oracle attack.

Numeric Error Incorrect numeric calculations or conversions, particu-
larly in large number arithmetic, that are not specific to
any one cryptographic cipher or algorithm.

Integer overflow, carry propagating bug, bit calculation errors, inte-
ger type size variations on different architectures.

Systems Issue Vulnerabilities arising from library interactions with the
local OS.

Files stored in a writable sub-directory, command injection in a shell
script, thread safety/concurrency issues.

Miscellaneous All other issues that don’t fit into one of the above cate-
gories.

Wildcard string matching (e.g., matching two domain names), miss-
ing documentation, and miscellaneous other implementation bugs.
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