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Abstract
This paper presents a large-scale analysis of fingerprinting-like
behavior in the mobile application ecosystem. We take a market-
based approach, focusing on third-party tracking as enabled by
applications’ common use of third-party SDKs. Our dataset consists
of over 228,000 SDKs from popular Maven repositories, 178,000
Android applications collected from the Google Play store, and our
static analysis pipeline detects exfiltration of over 500 individual
signals. To the best of our knowledge, this represents the largest-
scale analysis of SDK behavior undertaken to date.

We find that Ads SDKs (the ostensible focus of industry efforts
such as Apple’s App Tracking Transparency and Google’s Privacy
Sandbox) appear to be the source of only 30.56% of the fingerprint-
ing behaviors. A surprising 23.92% originate from SDKs whose
purpose was unknown or unclear. Furthermore, Security and Au-
thentication SDKs are linked to only 11.7% of likely fingerprint-
ing instances. These results suggest that addressing fingerprinting
solely in specific market-segment contexts like advertising may
offer incomplete benefit. Enforcing anti-fingerprinting policies is
also complex, as we observe a sparse distribution of signals and
APIs used by likely fingerprinting SDKs. For instance, only 2% of ex-
filtrated APIs are used by more than 75% of SDKs, making it difficult
to rely on user permissions to control fingerprinting behavior.
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1 Introduction
Device fingerprinting is a technique used to identify and track user
devices by collecting a wide range of information about device-
specific hardware, software, and configuration settings. The com-
bination of these attributes creates a unique, or near-unique, dig-
ital “fingerprint” for that device. This process has clear privacy
concerns—fingerprinting identifiers can be collected without user
control or notice, and persist over the device’s lifetime regardless
of most user privacy-seeking actions (e.g., clearing one’s cookies,
rotating advertising IDs, or enabling private browsing).

Both major mobile operating system vendors have undertaken
significant efforts to limit the privacy impact of device fingerprint-
ing. Apple has introduced policies that require apps to request user
consent to collect tracking-relevant device data [5], and provide
human readable explanations for the use of specific high entropy “re-
quired reason” APIs [4]. Both Google and Apple’s mobile platforms
now require developers to provide nutrition label-style privacy in-
formation to the user [3, 24], either as metadata submitted to their
respective application stores or attached as part of the application
itself. Google is developing a privacy sandbox for the web [1], and,
on Android, a new sandbox that restricts third-party advertising li-
braries from accessing sensitive information available to the rest of
the application [25]. These interventions are promising—providing
much needed transparency and accountability.

The success of such anti-fingerprinting efforts depend on the
technical implementation, market fit, and intention of the applica-
tion’s developer. For example, Apple’s anti-tracking and app trans-
parency policies explicitly allow the collection of fingerprinting
data for anti-fraud purposes [5], and Android’s Privacy Sandbox fo-
cuses solely on isolating code from third-party advertisers. Apple’s
“required-reason APIs” approach also has limitations; it currently
applies to just 30 APIs, and its effectiveness depends on what other
data points are collected across the wider fingerprinting ecosys-
tem. Therefore, characterizing the technical implementation of
fingerprinting in the wild and understanding stakeholders involved
would provide invaluable insight into the effectiveness of these
interventions.

This paper presents a comprehensive, large-scale analysis of de-
vice fingerprinting practices within the Android application ecosys-
tem. We adopt an empirical approach centered on the identifica-
tion of third-party Software Development Kits (SDKs) integrated
in mobile applications, measuring their market reach, tracking
methodologies, and privacy impact. To the best of our knowledge,
this research represents the most comprehensive analysis of SDK
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behavior regarding privacy-invasive practices like device finger-
printing, with an extensive dataset of over 228,000 unique SDKs
and 178,000 Android applications. Our methodology attempts to
enable a more nuanced understanding of the scale and scope of
device fingerprinting in mobile ecosystems; we avoid applying our
own potentially biased or narrow definitions on fingerprinting be-
havior, and adopt a number of techniques to provide reliability and
consistency when subjective analysis is unavoidable.

While many studies have measured the impact of fingerprinting
(see §2 for related work), there is a dearth of knowledge surround-
ing the purpose of fingerprinting behavior. For example, no prior
study has attempted to understand what kinds of third parties col-
lect sufficient information to fingerprint a device, and how this fits
in with the needs of the first party developer. Characterizing the
overall problem from the perspective of developers can help deter-
mine why these techniques are used, provide invaluable insight into
what is required to better preserve user privacy, and interpret the
value of assumptions underlying current and proposed enforcement
methods.

There are a number of challenges that significantly complicate
our study. Any fingerprinting-detection mechanism will likely be
incomplete, as there are many (potentially stealthy) methods of
collecting entropy from a device, including timing information,
instruction execution quirks, and other hardware-specific sources.
Categorization and analysis of SDKs is also a difficult task—while
applications self-label their use and market-fit, current SDK distri-
bution methods do not require SDK authors to provide significant
descriptions of their code. We describe the solutions to these and
other challenges in depth in §3.

One important challenge is definitional: The claim that a service
is fingerprinting suggests intent of the author of the code, which
is most often practically unknowable. Applications may collect
sufficient information to uniquely identify a device for any num-
ber of reasons, including analytics, crash reporting, anti-fraud, or
through normal operation of the application itself. We emphasize
that our study is purely observational—we measure fingerprinting
behavior, and ascribe no motivation to the authors of the code. We
also emphasize that our choice to examine the Android ecosystem
is entirely due to convenience, and that our results are likely to
extend to iOS as well. As noted in prior work [33], whereas An-
droid’s open ecosystem allows for scalable analysis, iOS’s digital
rights management scheme actively hinders the same.

We answer the following research questions:

RQ1: What types of behaviors do self-identifying fingerprinting
SDKs exhibit?

RQ2: What are the stated purposes of SDKs with likely fingerprint-
ing behavior?

RQ3: What kinds of apps use SDKs with likely fingerprinting be-
havior, and how prevalent are these SDKs in real world apps?

We find that many kinds of SDKs collect sufficient information to
track a user (at least 20 signals exfiltrated per SDK), and that there is
a large diversity in signals collected (SDKs exfiltrate 75.5 signals on
average, out of a total of 504 unique signals observed across the SDK
dataset). Though ads do make up a significant portion (≈ 30%) of
the SDKs that exhibit fingerprinting behavior, a surprising number
of fingerprinting-like SDKs used in common Android applications
have unclear functionality and lack significant description for cat-
egorization (≈ 24%). Anti-fraud and analytics services were also

prevalent in our dataset, indicating that more research must be done
to create privacy-preserving alternatives to fingerprinting as used
in such functionality. Finally, SDKs that exhibit likely fingerprint-
ing behavior are disproportionately popular—roughly 10× more
installs than non-fingerprinting alternatives—and individual SDKs
are likely to exist across multiple application market segments (e.g.,
health and dating).

Roadmap. We begin in §2 with important background and prior
work, as well as a short overview of the fingerprinting threat
model. In §3 we describe our dataset, analysis pipeline, and la-
beling methodology. Next, §4 presents an overview of our results,
and we conclude with a discussion and examination of our study’s
limitations in §5.

2 Background & Related Work
To the best of our knowledge, our work is the first large-scale study
of native app-based device fingerprinting in the wild.1 No prior
research has attempted to understand why this phenomenon is
common, or the market surrounding the use of these tools. Much
of the existing literature stems from examining fingerprinting as
an attack, with a focus on novel methods of fingerprinting.

Android applications & SDKs. Android applications may be writ-
ten in any language, and can be installed from arbitrary sources
including the Play store, secondary app stores, side-loading, or
may come pre-loaded on-device from the manufacturer. As a result,
much of Android’s security model revolves around sandboxing ap-
plications using a combination of SELinux’s SEPolicy and standard
Linux UID-style access control mechanisms. In addition to sand-
boxing, access to certain sensitive data is declared via metadata
provided by the app, and enforced via both install and run-time
permissions checks [40]. Unless manually sandboxed, Android third
party libraries (called SDKs) execute in the first-party application
context, and therefore enjoy the same permissions as the first-party
application.

SDKs may be distributed as either raw code or automatically
downloaded at build time from any number of repositories or build
systems. A commonly used build system is the Maven format, an
open standard for Java dependency resolution. In practice, distri-
bution of SDKs is commonly done using a build tool called Gradle,
which loads SDKs from any number of public Maven repositories.

Fingerprinting signals. In this paper we define a signal to be an
individual data point collected from a device. Different papers have
different terms for a unique datapoint in a fingerprint, Eckersley
[18] calls it a variable. Signals may be obtained from many sources
including API calls, common files on the platform, system proper-
ties, hardware quirks, or runtime environment values.

Diversity of signals. Though fingerprinting is commonly discussed
in the context of browsers [18, 19], there is a rich literature sur-
rounding the many methods of fingerprinting via native code.
Fingerprintable components include the microphones and speak-
ers [9, 14, 66], the accelerometer, the gyroscope, and the magne-
tometer [9, 16, 38, 52, 55, 64, 65], the hardware clock [32, 48], the

1We make a distinction here between web-based and on-device app fingerprinting. E.g.,
prior studies have looked into the prevalence of fingerprinting on the web. Here we
are exclusively interested in fingerprinting that occurs on-device outside of a web
context.
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Figure 1: An overview of our analysis pipeline. We begin by ① fetching apps, SDKs, and associated metadata from a series
of Maven repositories and the Google Play app store, only selecting applications installed on > 10𝑘 active devices (§3.1). We
continue by ② extracting a seed set of SDKs whose copy indicates that they are fingerprinting (§3.2). We then ③ use static taint
analysis to determine which SDKs exfiltrate these signals (§3.3), and ④ manually label the resulting SDKs to determine their
market fit (§3.4). Finally, we ⑤ perform another round of static analysis to determine which applications contain which SDKs
(§3.5).

camera [8, 46], the GPU clock [41], and the battery [13, 44]. Finger-
printing of the system or the apps ranges from specific APIs [45], to
system configuration (e.g., via procfs [50, 53]), user settings [35],
and browser configuration [18, 51]. Fingerprinting can also be done
by communicating with neighboring devices via short-range radio
protocols such as Bluetooth [34]. Distinct signals can be combined
to increase accuracy [2, 12].

Detection & prevention. Detection and prevention methods include
ML classification of API calls [7, 20, 29], re-calibrating sensors [15],
changing system settings [30], adding random noise to collected
data [15, 42], or using taint tracking to identify exfiltration of fin-
gerprintable data [37]. Permissions systems do not offer adequate
protection against fingerprinting [17, 58].

Prior measurement studies. There have been a number of studies
that measure the use of fingerprinting, though the majority focus
on the web [19, 43]. A significant challenge appears to be the ever-
growing surface of APIs, which have been quickly adopted by
fingerprinters [7].

Existing analyses of Android native systems are comparatively
rare. Longitudinal analyses not only highlighted this distinctive,
mobile-specific flavor of SDK-based tracking in general, but also
showed that the privacy risk across time and app versions varies
greatlywith little correlation to existing enforcement approaches [47].
Han et. al. [27] find that the presence of privacy-risky behavior
(including fingerprinting) does not seem to vary by the cost of the
app, with free apps and paid apps sharing similar sets of third-party
SDKs or dangerous permissions.

The closest study to ours is Torres et al’s 2018 work [21] on iden-
tifying fingerprinting in applications. They find that fingerprinters
on mobile devices rely more on categorical signals and less on side
channels, and argue that detection and prevention of fingerprinting

on mobile is distinct from web browsers. Our work uses a signifi-
cantly increased scale in terms of signals, SDKs, and applications
(30k vs our 178k), presenting a more complete understanding of
the ecosystem, in addtion to SDK labels and further statistics.

3 Methodology
In this section, we provide an in-depth discussion of our analysis
pipeline. We depict our overall process in Figure 1, and outline a
summary below:

(1) Dataset Collection (§3.1):We fetch a dataset of SDKs by
crawling popular Maven repositories and a dataset of appli-
cations from the Google Play Store.

(2) Seed Set & Manual Signal Extraction (§3.2): We use
the advertising copy published by each individual SDK to
generate a Seed Set that in public statements self-announce
as fingerprinters. We then manually reverse engineer these
SDKs to extract what signals each exfiltrate.

(3) Automated Signal Exfiltration Detection (§3.3): Using
static taint analysis in tandem with data generated from our
Seed Set, we determine if an SDK exfiltrates relevant fin-
gerprinting signals. We call all SDKs that perform enough
exfiltration to be exhibiting fingerprinting behavior the Ex-
tended Set.

(4) SDK Labeling &Analysis (§3.4):Unlike applications, SDKs
are unlabeled, and do not carry metadata associated to mar-
ket, use-case, or intended audience. To provide adequate sta-
tistics and market information, we manually label all SDKs
in the Extended Set. To avoid bias and meaningless labels,
we borrow coding techniques from the HCI community, it-
eratively developing a codebook and reaching consensus on
SDK label definitions and assignments.
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(5) App-SDK Matching (§3.5): To provide statistics on the use
of each SDK, we must first determine which SDK exists in
which application. We accomplish this through a series of
static analysis techniques.

There are a number of reasons we focus on SDKs rather than
applications as awhole. Onemay expect an SDK to be self-contained
and have explicitly publicized functionalities. As with any modern
development environment, SDKs use in applications is incredibly
common, with the majority of apps using third-party libraries to
support a variety of core functions. Finally, an emphasis on SDKs
also makes the potential harm from third parties far clearer: users
are more likely to understand and trust an application they have
actively installed, but may be unaware of the transitive trust they
have placed on the third party SDKs and services used by an app.

3.1 Dataset Collection
Application Dataset. We collected 3,025,417 APKs2 published on
the Google Play store over almost 18 months (from January 2023 to
May 2024). We supplement this set of APKs with each application’s
total audience size – the number of active devices that an individual
APK has been installed on. An active device is a device that has
been turned on at least once in the previous 30 days [23].

To avoid biasing our sample set with applications that lack a
significant user base, we limit our analysis to applications active
on the Google Play store with a total audience size of over 10,000
from April 13, 2024 to May 13, 2024. In total, this covers 178,054 ap-
plications. While we cannot estimate how often these applications
were launched, the audience-size metric assures that devices on
which the apps were installed were in active use. We approximate
the market reach of an app by summing all active 30-day installs of
these apps — we note that this may double-count users who install,
remove, and then reinstall the same app, as well as installs by the
same user on one device under multiple profiles (e.g., personal and
work) or on multiple devices (e.g., phone and tablet).

SDK Dataset. There is no single source of information for SDKs,
instead developers supply their build system with a URL of a partic-
ular Maven repository and library ID. We collate our dataset using
a custom crawler, extracting all SDKs from 9 separate large-scale
Maven repositories: JCenter, Maven Central, Google, Sonatype,
Spring.io, Jitpack, Bintray, and Artifactory. From these repositories,
we fetched a dataset of 228,598 SDKs as well as each SDK’s associ-
ated metadata. We excluded all SDKs whose version label included
one of the words {“alpha”, “beta”, “test”, “dev”, “debug”, “qa”}.

3.2 Seed Set and Manual Signal Extraction
From our dataset of SDKs we select a Seed Set of SDKs that, in
their advertising copy or other metadata, openly admit to collecting
information for the purpose of fingerprinting. We then manually re-
verse engineered each SDK, confirmed that the SDK was collecting
a nontrivial set of device data, and extracted a list of signals that
the SDK uploaded to a server. To avoid mislabeling, each candidate
SDK is then reverse engineered again by a second analyst, who
independently confirms the list of signals. In total, our Seed Set
contains 14 SDKs, reporting over 500 distinct signals. The results
from this effort are reported in more detail in §4.1.

2APK is the file format of Android apps. In the rest of the paper we use the term “APK”
as shorthand for one Android app.

3.3 Automated Signal Exfiltration Detection
We collected an Extended Set of fingerprinting-like SDKs, consisting
of SDKs that are similar in terms of collected data to the Seed Set.
To obtain this set, we developed a static analysis suite that performs
information-flow analysis on SDKs and their dependencies, and
selected SDKs with sufficient signal overlap with our Seed Set. Note
that SDKs in the Extended Set may collect signals beyond those
found in the Seed Set.

To avoid over-claiming the existence of fingerprinting behavior
in our dataset, we only include an SDK if it exfiltratesmore than the
lowest number of signals collected by any SDK in our Seed Set. Put an-
other way, we only consider an SDK to be exhibiting fingerprinting
behavior if it exfiltrates more than what is uploaded by an SDK that
openly admits to fingerprinting. Note that this is a conservative
estimate—it is likely that more sophisticated estimates of entropy
would indicate that an SDK could uniquely identify a user using
less information than what we examine here. The tradeoff here
is intentional; our goal is to provide upper-bar estimates without
indulging in more complicated analyses. This step results in 723
distinct SDK families, each with multiple versions, for a total of
14,178 SDK versions.

We built a static-analysis suite for Android APK and SDK analy-
sis, and deployed an interprocedural, context-, field-, object-sensitive
taint-flow tracking algorithm for fingerprinting detection. It works
by tainting all fingerprinting-related data with meta information
and then propagating taint at the instruction level, so that the trans-
parency of the flow information can be achieved, allowing us to
reconstruct the taint flow path to independently verify exfiltration.
We claim no novelty for this analysis, though some implementation
details may be of independent interest, so we include these in an
extended version of this work [49].

3.4 SDK Labeling
While developers provide an attestation of the categorical use-case
of their application as a part of submission to the Google Play store,
there is no equivalent process for SDKs. Indeed, Maven repositories
usually provide only the name of the SDK, a short explanation, and
a link back to the originator of the code. This metadata is often
incomplete, further obfuscating the use of the SDK. Other datasets
are more complete, including the Google Play SDK Index [26], but
provide only a small database of SDKs.

Here we borrow techniques from the HCI community and treat
the problem as a manual labeling task. Label definitions were col-
laboratively developed by a team of five expert coders based on the
metadata of the SDK, including the SDK’s description in Maven
and the content of its developer’s website, from a sample of 100
random SDKs in our dataset. For brevity, an informal description of
these categories is in Table 1, and a full explanation (including sub-
categories) is in the full version of this paper [49]. Upon reaching
saturation, we split the remaining SDKs between reviewers such
that each SDK was independently examined twice.

For efficiency, we limited our labeling effort to the 723 SDK fam-
ilies that have been detected in our application dataset, under the
assumption that all versions of the same SDK have an equivalent
use case and should share the same label. The resultant definitions
were robust, with reviewers usually agreeing on SDK labels; the
Krippendorff’s alpha inter-rater reliability score of the independent
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Table 1: SDK Label Definitions. Each SDK receives one label
based on its Maven metadata and website description, not
based on its code.

SDK Label Description

Advertising Supports displaying ads, ads bidding, ads tar-
geting, ads mediation, or analytics for the pur-
pose of monetization or conversion (Ex: Ap-
pLovin, Teads)

Analytics Monitors and reports on app health (examples:
TOAST Logger, RichAPM Agent), or collects
the user’s behavior in app (Ex: Pushwoosh,
Acoustic Tealeaf)

Security &
Authentication

Implements user authentication (E: Passbase,
Ondato), detects fraud and related security
anomalies (Ex: Incognia, SEON), and payment
functionality (Ex: Alipay, PayPal).

Tools / Other Provides navigation (Ex: Tencent Map Nav,
Radar), object or person tracking (Ex: Beacon-
sInSpace, Foursquare Movement), communi-
cation with social networks (Ex: Facebook,
Chat SDK), or other well-defined functional-
ity (Ex: iZooto App Push, GameUp)

Unclear /
Not Found

Purpose or functionality could not be deter-
mined from online metadata

labeling step was 0.804. Finally, all label disagreements were re-
solved and re-labeled in a meeting of the full group, meaning that
any labeling disagreement was addressed by comparing labels from
all five coders.

3.5 App–SDK Matching
Inspired by the large body of work in SDK identification for Android
apps [6, 28, 36, 36, 39, 56, 59–63], we created an SDK-identification
pipeline using a fine-grained code similarity metric that can be
aggregated across code units (e.g., classes, modules) and packaging
units (e.g., SDKs, SDK versions). The similarity metric relies on iden-
tifiers for system APIs (e.g., operating system calls, standard library
calls), opcode frequencies, framework APIs, and string constants.

In our design, we choose parameters for this similarity metric,
including the percentage of APK code similar to a known SDK
sufficient to declare the SDK as present in the APK, to ensure that
our results limited false positives at the risk of some false negatives.
In other words, we may miss the presence of an SDK in an APK,
and thus the statistical analysis in the rest of the paper provides
lower bounds for the prevalence of fingerprinting SDKs. We include
a detailed description of our approach in the full version of this
work [49].

4 Results
We analyzed the Seed Set, Extended Set, and their prevalence in
our application dataset to answer our three research questions (§1).

Table 2: Seed Set SDKs. List of SDKs that openly admit to
fingerprinting, through advertising copy, developer docu-
mentation, or other copy. The number of raw number of
signals they collect is on the right. Unique Signals is not a
total, but the set union of all signals without repetition.

Name Signals

Seon 43
Forter 69
Kaspersky AntiVirus SDK 20
Accertify (InAuth) 213
Castle 31
Microsoft Dynamics 365 128
IP Quality Score 58
Fingerprint.js 30
Shield 148
ThreatMetrix (Lexus Nexus) 94
Ravelin 30
TransUnion TruValidate 55
Socure 43
Incognia 81

Unique Signals 504

4.1 RQ1: Self-Identified Fingerprinters
What types of behaviors do self-identifying fingerprint-
ing SDKs exhibit?

We find 14 different SDKs that admit to fingerprinting in the
wild, listed in Table 2. Our manual analysis found that fingerprint-
ing libraries exfiltrate a minimum of 20 unique signals, and an
average of 75.5. Notably, the techniques used by these SDKs were
straightforward, with no SDK attempting to collect more than what
was available from framework-level API calls. This is a departure
from what has been previously measured in the web context (e.g.
audio context fingerprinting [19]), as well as the more advanced,
hardware-focused techniques discussed by the academic commu-
nity.

We examine the distribution of signals collected by SDKs in the
Seed Set, and present an overview in Figure 2. Though the total
number of signals collected is 1043, there are only 504 unique sig-
nals, with less than half of all signals collected by at least two SDKs.
The set of fingerprinting signals collected are relatively sparse, as
the individual signals that SDKs choose to select are somewhat
dissimilar—Figure 3 displays the cosine similarity between different
fingerprinting SDKs, with only two SDKs scoring above 0.5 (Tran-
sunion and Ravelin). Of the 504 unique signals collected, we find
that only 21 individual APIs were collected by more than half of the
SDKs in our Seed Set, by a maximum of 11 SDKs. We conclude that
cosine similarity of individual signals (as used in prior work [21])
is unlikely to be an effective detection mechanism.

Some SDKs stand out with unique API usage patterns. For in-
stance, Forter, Accertify, Microsoft Dynamics, and Shield appear to
use a much broader range of APIs compared to others. This could
suggest that these SDKs are more complex or serve a wider range
of functionalities. Conversely, Kaspersky AntiVirus SDK appears to
use a very limited set of APIs, possibly reflecting its more focused
security purpose. Under the assumption that all of these SDKs
perform fingerprinting equally well, such breadth of API usage



CCS ’25, October 13–17, 2025, Taipei, Taiwan Michael A. Specter, Mihai Christodorescu, Abbie Farr, Bo Ma, & Robin Lassonde

Figure 2: Map of signals collected by known fingerprinting SDKs in the Seed Set, with one dot per API exfiltrated. The top plot
shows the percentage of Seed Set SDKs that exfiltrate that API; 80% of APIs are exfiltrated by fewer than 50% of SDKs, and only
2% of APIs are exfiltrated by 75% of SDKs.

Figure 3: Cosine similarity between Seed Set SDKs, each rep-
resented as a one-hot encoding vector of their specific APIs
used.

patterns implies that some APIs provide more valuable (i.e., more
fingerprintable) signals than others.

4.2 RQ2: Purposes of Likely Fingerprinters
What are the stated purposes of SDKs with likely fin-
gerprinting behavior?

Analytics

Security and Authentication

Tools / Other

Unclear / Not found

Ads

77

85

167

173

221

Figure 4: Prevalence of purposes across the Extended Set of
723 likely fingerprinting SDKs.

The automated exfiltration detection (§3.3) yields 723 SDKs that
exhibit behavior similar to the known fingerprinting behavior of
the SDKs in the Seed Set. Each SDK may have multiple versions and
our SDK dataset identifies 14,178 versions for these 723 SDKs, for an
average of 19.60 versions per SDK. With the Extended Set labeled
as described in Section 3.3 we consider the prevalence of various
purposes across SDKs that exhibit fingerprinting-like behavior and
plot the resulting distribution in Figure 4.

Several observations are readily available from the plot. First,
there is a clear separation between the “Ads” category, the “Tools /
Other” category, and the rest of the categories. The “Tools / Other”
category being large is expected, as it encompasses a wide variety of
functionalities, from cloud storage, to image and video processing,
and to consent management. The high number of SDKs with “Ads”
as purpose is potentially representative of the complex structure
of that particular industry, where ad networks provide their own
SDKs and ad platforms act as aggregators and mediators between
apps and ad networks, with corresponding mobile SDKs that reflect
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these relationships. Oftentimes, the ad-mediation systems consists
of 5–15 individual SDKs, one for each ad network to which the
mediator can connect, easily boosting the number of total SDKs in
this vertical. We opted to count these connector SDKs separately —
from a security and privacy perspective they are distinct artifacts.

A second observation is there is a large contingent of SDKs
whose purpose is not clear from online, public information. The
“Unclear / Unfound” category is the second highest source of likely
fingerprinting behavior. We know these SDKs are in use in a variety
of apps (as we see later in §4.3), so the question is not only what
purpose these SDKs serve, but also how to make this purpose infor-
mation available to security and privacy enforcement mechanisms.
One option would be to reverse engineer the code of each SDK
and infer from this code its purpose, though this is unlikely to be a
scalable long-term solution (and out of scope for this paper).

A further consideration for the use of privacy-preserving al-
ternatives is the long tail of functionalities present in the “Tools
/ Other” category, which represents 23% of the total number of
likely fingerprinting SDKs. While “Ads”, “Security and Authentica-
tion”, and “Analytics” are reasonably well understood and studied
in terms of privacy, the “Tools / Other” SDKs cover a broad range
of algorithms and data types that may not have readily available
privacy-preserving alternatives.

SDK Purpose & Behavior. The challenge of identifying the pur-
pose of likely fingerprinting SDKs of a particular type could be
alleviated by focusing on their use of fingerprinting signals, if suf-
ficiently discriminative. For example, if Ads SDKs have distinct
fingerprinting behaviors (in terms of signals and API data they exfil-
trate) compared to those of Security and Authentication SDKs, one
could identify and control fingerprinting appropriately without re-
lying on the SDK’s purpose declaration or on its non-fingerprinting
functionality, both of which could be adversarially manipulated. We
evaluated this hypothesis by expressing the fingerprinting behavior
of each SDK as points in a high-dimensional space defined by a
one-hot encoding of the APIs exfiltrated. Each API of interest is
an independent dimension in this space and an SDK is placed at
position 0 along this dimension if it does not exfiltrate the corre-
sponding API, or 1 if it does. This results in 504-dimensional space
(one for each API observed in the Extended Set of SDKs) in which
we locate the 723 SDKs.

In Figure 5, we provide a visual representation of the similar-
ity between different SDK types in the Extended Set using a t-
Distributed Stochastic Neighbor Embedding (t-SNE) [54] plot. t-
SNE allows us to cluster the SDKs based on their “natural” similarity
in fingerprinting behavior by mapping the high-dimensional space
(our 504 signals) to a faithful representation in a lower-dimensional
space through non-linear transformations while preserving local
and global relationships between the data points. Based on the
recommendations from Wattenberg, Viégas, and Johnson [57], we
set t-SNE perplexity to 25, learning rate of 10, and iterations to
5,000, resulting in a final KL divergence of 0.614789. The resulting
t-SNE output is shown in Figure 5, with one dot per SDK, relatively
positioned as determined by t-SNE and color coded based on our
five SDK purpose labels.

The t-SNE plot illustrates the diversity of signal/API usage in
fingerprinting behavior, as a large number of small clusters formed.
At a minimum this leads us to believe that a corresponding larger
number of small, focused permission-based policies may be able

to address the fingerprinting problem, with the associate risk of
enforcement performance (due to the cost of maintaining and eval-
uating this many policies) and low usability (due to placing the user
in the position of making decision based on seemingly similar but
privacy-distinct permissions).

The feasibility of automating the anti-fingerprinting/anti-tracking
policies put forth by the industry (advertising: no tracking allowed,
anti-fraud: tracking allowed) can be reduced to whether “Ads” SDKs
(marked as ◆ in Figure 5) are easily separable from “Security and
Authentication” SDKs (× in Figure 5). The right third of t-SNE plot
containsmost of the “Security and Authentication” SDKs (×), while
the “Advertising” SDKs (◆) are on the left. Yet there are many “Se-
curity and Authentication” SDKs on the left side of the plot, not to
mention “Analytics” (■) and “Tools / Other” SDKs (+), that appear
to have similar fingerprinting-like behavior to the “Ads” SDKs. Thus
any automatic enforcement that needs to distinguish between “Ads”
SDKs and “Security and Authentication” SDKs will need to rely on
non-trivial classifiers that are more expressive than permissions.

Finally we observe that the “Unclear / Unfound” SDKs (●), which
are declared in APKs and present in Maven repositories but lack
any descriptive information, have fingerprinting-like behaviors
similar to all other SDK categories. This supports the need for
robust categorization and labeling mechanisms for SDKs, and the
conclusion that behavioral analysis may be insufficient without
additional out-of-band (non-code) information.

Use of Sensitive Signals. We manually identified 24 APIs which
could be used to retrieve location data exactly or approximately
and then checked how many of the likely fingerprinting behaviors
in SDKs from the Extended Set rely in these APIs. We performed
a similar analysis for app-usage signals (based on the three APIs
we identified to provide information about the apps the user has
installed on the device, the apps that are in use, or the usage statistics
for installed apps) and for the account-list signals (based on two
APIs to retrieve lists of personal accounts registered on the device).
We find that of likely fingerprinting SDKs 72% collect coarse-grained
location signals, 71.6% collect fine-grained location, and 86.29%
collect at least one or the other. Only only 6.15% record account-list
signals, and 38.46% collect app usage information.

4.3 RQ3: Market Reach
What kinds of apps use SDKs with fingerprinting be-
havior, and how prevalent are these SDKs in real-world
apps?

To answer this question, we consider the SDK categories described
in the RQ2 results, and the app categories assigned by the Google
Play Store [22].

We are interested in understanding the presence of fingerprint-
ing SDKs in the mobile-app marketplace. For this, we measured
how many apps include fingerprinting SDKs in each app category,
which categories of fingerprinting SDK are in most use, and which
fingerprinting SDKs co-occur most often in apps. The first mea-
surement seeks to determine whether there are app categories
with particularly high prevalence of fingerprinting and thus that
should be prioritized for any fingerprinting-reduction intervention.
The second and third measurements inform any technical efforts
to replace fingerprinting-based solutions with privacy-preserving
alternatives.
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Figure 5:Map of likely fingerprinting behaviors of SDKs in the Extended Set, computed using t-SNE over embeddings constructed
by one-hot encoding the exfiltrated APIs. Proximity of SDKs indicates that they exfiltrate data from similar sets of APIs.

Figure 6 shows the prevalence of apps that include fingerprinting
SDKs in each app category. Figure 6a illustrates that the raw number
of apps using fingerprinting SDKs averages at 3.2% across app
categories, ranging between 0.8% (for “Events” apps) and 10% (for
“Video Players” apps). Figure 6b takes into account the number of
installs each such app had in the 30-day period, and shows that
presence of fingerprinting functionality is heavily skewed towards
popular apps.

On average 39.4% of apps in a category contain at least one
fingerprinting SDK, and while the minimum prevalence is 5.5%
of apps (for the “Libraries and Demo” category), a number of app
categories have >50% prevalence: “Maps and Navigation”, “Beauty”,
“Shopping”, “Sports”, “House and Home”, “Social”, “Food and Drink”,
“Dating”, “Game”, and “Comics”. From a user’s point of view, this
indicates that randomly installing a popular app has a 39.4% chance
of being fingerprinted and, if they select a dating, game, or comics
app, they will be fingerprinted with a 80+% probability.

The “Comics,” “Game,” and “Dating” categories stand out with the
highest number of apps incorporating likely fingerprinting SDKs,
respectively in this order. This could be attributed to several factors,
such as the prevalence of free-to-use functionality (e.g., free-to-play
games) that rely on targeted advertising or in-app purchases, or the
need for (frictionless) user identification in online settings.

Fingerprinting Prevalence across App Categories. To further un-
derstand the prevalence of likely-fingerprinting SDKs in the mobile-
app ecosystem, we use the purpose labels we developed in §4.2 to
map app categories to SDK categories. This results in the heatmap
shown in Figure 7a, in which a deeper shade of red indicates that
the SDK category of that row dominates the app category of that
column. For example, any likely-fingerprinting SDKs used by “Art
and Design” apps come primarily from the “Ads” SDK category,
while likely-fingerprinting SDKs in “Finance” apps are foremost
from the “Analytics” SDK category.

The “Ads” SDKs dominate across almost all app categories as a
source of likely fingerprinting behavior, with “Unclear / Unfound”
SDKs as the second most common. We note that in many cases
the absolute number of “Unclear / Unfound” SDKs is close to that
of “Ads” SDKs (e.g., in the “Business” app category, the labels for
16,097 SDKs are unclear, and 17,780 SDKs have the “Ads” label)
and thus any shift from “Unclear / Unfound” to “Ads” will only
further cement the dominance of “Ads” SDKs a source of likely
fingerprinting behavior.

A second observation from this heatmap is that there are several
app categories (“Finance”, “Food and Drink”, “Shopping”) where
“Analytics” likely-fingerprinting SDKs are more prevalent that other
categories of likely-fingerprinting SDKs. We hypothesize that in
these app categories, the fingerprinting is less used to track user
identities (which are known from the user-account information)
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Figure 6: The number of apps that come with fingerprinting SDKs is rather small, on average at less than 5% of the total number
of apps in a category (a), yet these apps are some of the most installed (b), giving likely fingerprinting SDKs an outsized presence
in the market. In 23 app categories ( highlighted in (c)), apps with fingerprinting SDKs are 10x more popular than other apps.

and more used to understand user preferences with respect to the
items for sale in the app.

Possible Tracking across App Categories via Fingerprint Sharing. A
significant privacy risk brought on by fingerprinting is the potential
for a third party to track user activity across applications. This can
happen when an SDK included in multiple applications fingerprints
a user, and thus allows for user activity to be attributed to the
same user for both. A service might then learn, say, that a user that
engages in particular style of dating app, and also uses a specific
medical or finance application. Such cross-app tracking may take
place on device or on the server, in both cases powered by the
fingerprinting data obtained from the shared SDK.

To estimate a lower bound on the risk of cross-app tracking, we
analyze the prevalence of likely fingerprinting SDKs present in

distinct categories by computing the probability that two apps ran-
domly selected from each app category share at least one likely fin-
gerprinting SDK. The results are shown in Figure 7b as a heatmap
(only the lower diagonal presented, as the heatmap is symmet-
ric). A darker shade of blue in the figure indicates a higher preva-
lence of shared fingerprinting SDKs, as shown, for example, by
the (“Game”, “Entertainment”) entry compared with the (“Travel
and Local”, “Comics”) entry. We compute these probabilities for the
top-1000 apps by total audience size (as defined in §3.1) for each app
category, regardless of whether those apps include a likely finger-
printing SDK or not. As a result, the prevalence (and the associated
heatmap shown in Figure 7b) reflect both the popularity of apps
and the distribution of likely fingerprinting SDKs in such popular
apps.

Analysis of this heatmap clearly indicates that a few app cate-
gories have likely fingerprinting SDKs in common with many other
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(a) Heatmap of the prevalence of likely
fingerprinting SDKs in app categories (X-
axis) and SDK categories (Y-axis).

(b) Heatmap of the co-occurrence of likely fingerprinting SDKs across pairs of app categories. Each
cell describes the percentage of apps in the corresponding app categories (on the X-axis and Y-axis)
that share one or more likely fingerprinting SDKs.

Figure 7: Prevalence of likely fingerprinting SDKs within and across app categories. In (a), the color gradient is computed per
app category, allowing the comparison of SDK prevalence between app categories. In (b), the color gradient is computed per
pair of app categories given by the X-axis and Y-axis coordinates. For raw data, see Appendix A.

app categories. For example, “Game” apps share likely fingerprint-
ing SDKs with “Art and Design” apps, as well as with apps in the
“Beauty”, “Books and Reference”, “Comics”, “Communication”, “Dat-
ing”, “Entertainment”, “Health and Fitness”, “Libraries and Demo”,
“Lifestyle”, “Maps and Navigation”, “Music and Audio”, “News and
Magazines”, “Personalization”, “Photography”, “Productivity”, “So-
cial”, “Tools”, “Video Players”, and “Weather” categories. Similarly,
“Personalization” apps share SDKs with 7 out of 33 app categories.
From a user’s point of view, this implies that they are at higher risk
of cross-app tracking if they install apps from both the “Game” and
“Comics” categories.

Alternatively, some categories of apps rarely share likely finger-
printing SDKs with other app categories. We highlight the “Finance”
and “Medical” app categories in particular, as such apps often pro-
cess highly sensitive data. Without further study, one cannot tell

why fingerprinting is not more common here, and we note that
such apps often require the user to authenticate to access their bank
or investment account or their medical record and as such may not
need to fingerprint the user through indirect signals.

5 Discussion & Limitations
Our results indicate that the fingerprinting ecosystem is more com-
plex than previously estimated, both in terms of fingerprinting be-
havior and fingerprinting purpose. We interpret the results below,
discuss limitations of our methodology, and present implications
for app security mechanisms.

Challenges for Sector-Specific Solutions. A core observation of
this paper is that the current mobile ecosystem has evolved to or-
ganically deploy fingerprinting-like behavior in a wide variety of
apps through several types of SDKs. Our analysis reveals that while
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advertising SDKs contribute to fingerprinting, they are not the sole
culprits: A significant portion of fingerprinting-like behavior origi-
nates from SDKs employed for analytics and anti-fraud purposes,
and a large contingent (23.9%) did not have sufficient public infor-
mation about their purpose or functionality to discern a category.
These SDKs are often integrated for reasons directly outside of mon-
etization — understanding user behavior to improve applications or
preventing bots and fraud — despite ultimately collecting enough
device information to create a fingerprint.

This finding challenges the prevailing notion that fingerprinting
is primarily driven by app developer’s need to monetize via adver-
tising, and highlights the opportunity for a broader perspective
on privacy-preserving alternatives. Research on how developers
can be incentivized to adopt privacy preserving analytics, for ex-
ample, could prove useful. It is also likely that sandboxing efforts
(such as Android’s Privacy Sandbox [1]) could provide additional
benefit for both detection and enforcement against SDKs that over-
collect — though systems research into lightweight sandboxing to
support this setting is necessary, as scaling current process-based
techniques to non-ads SDKs requires untenable overhead for con-
strained mobile environments.

Challenges for API-Specific or Other Behavioral Defenses. A sur-
prising result of our exploration of the Seed Set (self-identified
fingerprinting SDKs) was that the space of APIs used is sparse; the
SDKs collected information from dissimilar sets of APIs. This held
true regardless of the use-case of the SDK or of its prevalence in our
dataset of applications. A potential explanation might be API Prox-
ying [31], which may further complicate any anti-fingerprinting
enforcement, though determining the joint entropy or shared en-
tropy of particular API’s is beyond the scope of this work.

In any case, it would appear that targeting specific APIs (akin to
Apple’s required reasons [4]) represents a brittle defense against fin-
gerprinting. Developers have a number of signals at their disposal,
and could easily move to other sources of entropy. Further, though
we (surprisingly) found no evidence of non-API hardware-based
fingerprinting in our Seed Set, one might expect developers to shift
more advanced methods if comprehensive enforcement at the API
level were introduced.

Potential for Sector-Specific Analysis & Targeting. It is worth not-
ing that certain sensitive application verticals appeared to have
an improved privacy stance. Normalized by install volume, only
30% of applications in the medical category used a fingerprinting
SDK, and (assuming a normal distribution holds between sample
sets) only 19.5% of those did so using an ads SDK — the bulk of
identifiable fingerprinting behavior appears to come from analytics.
Medical applications also appeared to have a lower potential for
cross-application tracking. This heartening result, which is largely
repeated in the Finance category, highlights the need for future
work focusing on solutions for specific sensitive market verticals.

Need for Multi-Platform Analysis. It is likely that our results ex-
tend to the iOS ecosystem — indeed, all SDKs in our Seed Set appear
to have versions readily available for iOS — a finding consistent
with prior work on cross-platform tracking [33]. However, it is
difficult to perform such analysis on iOS, as Apple’s application
and operating-system wide DRM restricts third parties’ ability to
scalably perform static and dynamic analysis on applications in
their App Store. Future work studying the iOS ecosystem would

provide invaluable insight into the effectiveness of design choices
between the two operating systems.

5.1 Limitations
Any empirical study, including the present paper, is a limited view
into real-world conditions and trends and thus it is important to
evaluate the factors that threaten its validity. Following the “Camp-
bell Tradition” [11], we consider four types of validity—internal,
statistical, construct, and external—and their impact on this study.

Internal validity refers to whether the measured effect (finger-
printable APIs) truly corresponds to the outcome of interest (fin-
gerprinting behavior). A risk is that the use of APIs to retrieve
high-entropy data may not be caused by intentional fingerprinting
behavior, but instead the result of necessary app functionality. We
sidestep this by focusing on documenting the purposes of collec-
tion of fingerprintable data. A secondary limitation exists in the
selection bias implicit in our Seed Set, which consists of SDKs that
self-identify as fingerprinting. It may be that SDKs that fingerprint
for hidden reasons use alternative techniques, which would not
be caught in our later analyses. We assume that a Seed Set SDK’s
self-reporting is honest and make no further inferences about the
SDK’s intent.

Statistical validity refers to the risks of underpowered experi-
ments, i.e., without sufficient statistical support. Our large sample
size of 228,598 SDKs and 3,025,417 apps mitigates this risk.

Construct validity refers to the choice of metrics to measure the
presence of fingerprintable APIs and behaviors. We focused on the
number of APIs as an efficient metric of fingerprinting behavior,
though we note that not all APIs are equally useful for fingerprint-
ing. For now we make the simplifying assumption that in-the-wild
techniques are largely equivalent, and that there is no relationship
between signals collected. Using more complex metrics such as col-
lision entropy [10] requires experiments across large sets of devices
and users, which we leave for future work.

External validity refers to the generalizability of our results to
real-world. Our choice of actual SDKs from popular Maven reposi-
tories and mobile apps from the Google Play store ensure minimize
this risk. However, we do not attempt to catalog all fingerprinting
mobile ecosystem, limiting ourselves to Java-language SDKs that
are part of the Android/AOSP framework (excluding non-platform
APIs or those from OEMs). It is possible that the Seed Set of finger-
printing SDKs, hand selected through web search, is not represen-
tative of all fingerprinting behaviors in the wild, and further study
to ensure a comprehensive view is needed.

6 Conclusion
In this paper, we presented the largest-scale analysis of SDK be-
havior ever conducted, examining over 228,000 SDKs and 178,000
Android applications to understand the prevalence and purpose of
fingerprinting-like behavior. Our findings reveal that a significant
number of SDKs, beyond those explicitly designed for advertising,
collect enough information to potentially track users. This includes
SDKs used for analytics and anti-fraud, highlighting the need for
privacy-preserving alternatives in these areas. Surprisingly, a large
portion of SDKs exhibiting fingerprinting-like behavior lacked clear
identification, emphasizing the need for greater transparency in
the SDK ecosystem. Moreover, we observed that these SDKs with
fingerprinting-like behavior are disproportionately popular and
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often integrated across diverse application categories. These results
underscore the importance of ongoing efforts by Apple and Google
to enhance user privacy and emphasize the need for continued
research to ensure that such industry efforts are well directed.
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A Data Tables for Fingerprinting Prevalence in
SDK and App Categories

The following tables provide detailed data on our market measure-
ments.

Table 3 presents the prevalence of likely fingerprinting SDKs
across various app categories, broken down by SDK type. For in-
stance, in the “Art and Design” app category, 43.3% of apps are likely
to contain Ads SDKs that likely engage in fingerprinting. The data
shows that “Ads” and “Unclear/Unfound” SDK categories generally
have higher prevalence rates across most app categories compared
to “Analytics,” “Security and Authentication,” and “Tools/Other”
SDKs.

Tables 4 and 5 detail the proportion of apps within each category
that contain SDKs also present in apps of other categories. The
tables indicate that many apps utilize SDKs that are also prevalent
in apps belonging to different categories. For instance, while 0.401
of “Books and Reference” apps share SDKs with “Art and Design”
apps, only 0.095 of “Art and Design” apps share SDKs with the
“Food and Drink” category, indicating a much lower overlap in SDK
usage between these two specific app types.

Table 3: The prevalence of likely fingerprinting SDKs (by
SDK category) in app categories.

SDK Category

App Category Ad
s

An
al
yt
ics

Se
c.
an
d
Au

th
n

To
ol
s /

Ot
he
r

Un
cle

ar
/ U

nf
ou
nd

Art and Design 0.433 0.138 0.132 0.022 0.274
Auto and Vehicles 0.211 0.200 0.183 0.064 0.341
Beauty 0.484 0.146 0.080 0.014 0.277

Books and Reference 0.544 0.093 0.066 0.030 0.267
Business 0.241 0.234 0.138 0.067 0.320
Comics 0.387 0.193 0.099 0.024 0.297

Communication 0.475 0.127 0.096 0.018 0.284
Dating 0.275 0.237 0.108 0.022 0.358
Education 0.516 0.102 0.061 0.036 0.285

Entertainment 0.412 0.128 0.119 0.021 0.320
Events 0.346 0.118 0.154 0.044 0.338
Finance 0.163 0.397 0.111 0.038 0.292

Food and Drink 0.095 0.318 0.225 0.044 0.318
Game 0.339 0.160 0.185 0.010 0.307
Health and Fitness 0.340 0.200 0.117 0.055 0.287

House and Home 0.209 0.252 0.189 0.059 0.291
Libraries and Demo 0.463 0.075 0.100 0.025 0.338
Lifestyle 0.358 0.165 0.129 0.044 0.304

Maps and Navigation 0.325 0.167 0.174 0.051 0.282
Medical 0.195 0.288 0.140 0.052 0.324
Music and Audio 0.452 0.108 0.093 0.063 0.284

News and Magazines 0.386 0.193 0.045 0.052 0.324
Parenting 0.314 0.263 0.082 0.041 0.299
Personalization 0.451 0.094 0.140 0.017 0.298

Photography 0.464 0.140 0.103 0.024 0.268
Productivity 0.463 0.145 0.105 0.028 0.259
Shopping 0.121 0.347 0.177 0.056 0.298

Social 0.317 0.236 0.120 0.051 0.276
Sports 0.375 0.199 0.085 0.038 0.302
Tools 0.454 0.116 0.130 0.029 0.271

Travel and Local 0.179 0.203 0.272 0.059 0.287
Video Players 0.483 0.092 0.121 0.018 0.286
Weather 0.411 0.118 0.148 0.053 0.270

Full Version of the Paper

A full version of this paper is online at

https://arxiv.org/abs/2506.22639

The full version includes:
• Descriptions of the static analyses performed,
• A description of the SDK-identification algorithm,
• A definition of the codebook used to categorize SDKs, and
• A list of the APIs observed in fingerprinting-like behaviors.

https://arxiv.org/abs/2506.22639
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